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Preface

For several years now, there has been an exponential growth of the amount of
life science data (e.g., sequenced complete genomes, 3D structures, DNA chips,
mass spectroscopy data), most of which are generated by high-throughput ex-
periments. This exponential corpus of data is stored and made available through
a large number of databases and resources over the Web, but unfortunately still
with a high degree of semantic heterogeneity and varying levels of quality. These
data must be combined together and processed by bioinformatics tools deployed
on powerful and efficient platforms to permit the uncovering of patterns, sim-
ilarities and in general to help in the process of discovery. Analyzing complex,
voluminous, and heterogeneous data and guiding the analysis of data are thus
of paramount importance and necessitate the involvement of data integration
techniques.

DILS 2008 was the fifth in a workshop series that aims at fostering discus-
sion, exchange, and innovation in research and development in the area of data
integration for the life sciences. Each previous DILS workshop attracted around
100 researchers from all over the world and saw an increase of submitted pa-
pers over the preceding one. This year was not an exception and the number of
submitted papers increased to 54. The Program Committee selected 18 of them.
The selected papers cover a wide spectrum of theoretical and practical issues
including data annotation, Semantic Web for the life sciences, and data mining
on integrated biological data.

Among these 18 papers, we distinguished 8 that describe research on new
models, methods, or algorithms, and 8 that deal with the description of systems
or experience with systems in practice. The two remaining papers have been
selected for publication in a special issue of the BMC Bioinformatics Journal.

In addition to the presented papers, DILS 2008 featured three keynote talks
by Olivier Bodenreider, National Library of Medicine, NIH, USA; Peter Karp,
SRI International, USA; and Norman Paton, University of Manchester, UK.
DILS 2008 also included a tutorial on bio-ontologies and a session dedicated
to updates of biomolecular resources of world-wide importance: the UniProt
knowledgebase and the EBI proteomics services.

The workshop was held at the University of Evry, in what is known as the
‘Genomic Valley’ at the heart of the Ile-de-France region, in France. DILS 2008
was kindly sponsored by the University of Paris-Sud 11, Microsoft Research who
also made available their conference management system, the ENFIN network of
Excellence, and the following institutes: IMGT, CEA, SIB, and CNRS (LRI and
GDR BIM). We are very grateful to the University of Evry for hosting DILS,
the MAISEL school for providing rooms for students, and the Genopole-Evry
for its help in the local organization.



VI Preface

As editors of this volume, we thank all the authors who submitted papers,
the Program Committee members and the external reviewers for their excel-
lent work. Special thanks go to the local organizers, webmasters, Publicity and
Sponsorship Chairs: Patrick Amar, Marie-Dominique Devignes, Nicole Lefèvre-
Villain, Frédéric Lemoine, Isabelle Mougenot, Bastien Rance, Malika Smail, and
Fariza Tahi. Finally, we are grateful for the cooperation of Springer in putting
this volume together.

June 2008 Amos Bairoch
Sarah Cohen-Boulakia
Christine Froidevaux
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Ontologies and Data Integration in Biomedicine: 
Success Stories and Challenging Issues 

Olivier Bodenreider 

Lister Hill National Center for Biomedical Communications, National Library of Medicine, 
National Institutes of Health, Bethesda, Maryland, USA 

olivier@nlm.nih.gov 

Abstract. In this presentation, we review some examples of successful 
biomedical data integration projects in which ontologies play an important role, 
including the integration of genomic data based on Gene Ontology annotations, 
the cancer Biomedical Informatics Grid (caBIG) project, and semantic mashups 
created by the Semantic Web for Health Care and Life Sciences community.  

1   Introduction 

The promise of translational medicine hinges upon bridging basic research and 
clinical practice [1]. One key element to the integration of the research and clinical 
communities is the integration of the information sources and data used in these 
communities. In practice, bridges need to be created both across domains (e.g., 
between genotypic and phenotypic information sources) and across knowledge bases 
within a domain (e.g., between genomic and pathway resources). Biomedical 
ontologies play an important role in data integration [2]. They support data integration 
in two different ways, corresponding to two different approaches to data integration: 
warehousing and mediation [3]. One the one hand, by providing a controlled 
vocabulary in a given domain, ontologies support the standardization required from 
warehousing approaches to data integration, in which the sources to be integrated are 
transformed into a common format and converted to a common vocabulary. On the 
other hand, mediation-based approaches use ontologies for defining a global schema 
(in reference to which queries are made) and mapping between the global schema and 
local schemas (the schemas of the sources to be integrated). 

We review examples in which ontologies have been used successfully for 
integrating biomedical data, including the integration of genomic data based on Gene 
Ontology annotations, the cancer Biomedical Informatics Grid (caBIG) project, and 
semantic mashups created by the Semantic Web for Health Care and Life Sciences 
community. Barriers to integration are discussed next. 

2   Gene Ontology 

The Gene Ontology (GO) [4] is a controlled vocabulary for the functional annotation 
of gene products across species [5]. In less than a decade, GO has been adopted by 
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several dozen model organism communities (e.g., Mouse Genome Informatics [6]) 
and has become a de facto standard for functional annotation. In addition to 
standardizing annotations across species, GO asserts relations among terms, which 
also facilitates data integration. GO is an enabling resource for comparative genomics, 
because it allows researchers to compare and contrast the functions of genes and gene 
products across multiple organisms [7]. Annotations repositories can be integrated not 
only with other annotation repositories, but also with a variety of data, including gene 
expression profiles (microarray data). 

3   Cancer Biomedical Informatics Grid (caBIG) 

The cancer Biomedical Informatics Grid (caBIG) of the National Cancer Institute 
(NCI) establishes a common infrastructure used to share data and applications across 
institutions to support cancer research efforts [8] in a grid environment [9]. 
Ontological resources such as the NCI Thesaurus [10] and the Cancer Data Standards 
Repository (caDSR) [11], a metadata registry for common data elements, are key 
resources of the common infrastructure for cancer informatics [12]. The data services 
currently available include, for example, caArray [13], a microarray data repository 
and gridPIR [14], a proteomic information resource based on UniProt and other 
databases from the Protein Information Resource (PIR). The Cancer Translational 
Research Informatics Platform (caTRIP) [15] takes a mediator-based approach to 
integrating a number of caBIG data services. Common data elements (CDEs) from the 
caDSR are used to join and merge data from the various repositories. CaBIG 
completed a 4-year pilot phase in 2007, involving 1,000 individuals from almost 200 
organizations. In the next phase, caBIG tools and infrastructure will be made 
deployed to NCI-designated cancer centers. 

4   Semantic Web for Health Care and Life Sciences 

For the past two years, the World Wide Web Consortium (W3C) Health Care and Life 
Sciences Interest Group (HCLSIG) [16] has investigated the use of Semantic Web 
technologies in biomedicine. Ontologies play a central role in the Semantic Web [17], 
especially in biomedicine for which a large number of ontologies have been developed. 
This group advocates the use of Semantic Web technologies for supporting transla-
tional research [18] and has demonstrated the feasibility of integrating disparate 
resources in the domain of neurosciences, including Entrez Gene, Gene Ontology 
Annotations, the Allen Brain Atlas, PubMed/MEDLINE, and MeSH [19]. Other such 
“mashups” (integrative applications) have been developed since (e.g., [20]). Similar 
approaches have been used to integrate genotype and phenotype information [21], 
pathway and disease information [22], and to create drug-target networks [23]. 
Biomedical ontologies are crucial to these integration projects. 

5   Challenging Issues 

Freely and publicly available – preferably in several popular formats, easily discoverable 
and widely distributed ontologies are enabling resources for data integration, especially 
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when they are embraced by active communities, used as a de facto standard in major data 
repositories and can interoperate with other ontologies. Integration is further facilitated 
by the availability of tools developed for and interfaces to these ontologies. This scenario 
essentially characterizes the Gene Ontology and explains in part its success. 

There are, however, many obstacles preventing ontologies from being used efficiently 
for data integration. Despite the existence of repositories such as the National Center for 
Biomedical Ontology’s BioPortal [24] and the Unified Medical Language System 
(UMLS) [25], not all ontologies can be accessed easily. Furthermore, some ontologies in 
the UMLS are subject to intellectual property restrictions and the UMLS cannot be used 
without first signing a license agreement. While OBO and OWL are popular formalisms 
for representing ontologies, many ontologies are only available in proprietary formats. 

There is no authoritative mechanism for creating unique identifiers for biomedical 
entities. As a result, the same entity is often present under different identifiers in 
multiple ontologies, impeding integration. Post hoc mappings across ontologies such 
as those created by the UMLS somewhat alleviate this problem, but do not provide a 
complete solution. Additionally, in the Semantic Web, there is a need for a standard 
way of representing identifiers (e.g., URIs), as well as for services bridging identifiers 
across namespaces. 

Differences in the granularity of annotations across datasets are also an issue, 
partially compensated by the use of aggregation strategies, such as the GO Slims [26] 
and the use of semantic similarity metrics [27]. Finally, not all datasets are directly 
amenable to integration. For example, metadata elements describing gene expression 
data in microarray repositories and fields in genome-wide association studies (e.g., 
Framingham Heart Study) are often in free text, not annotated to any ontology. Such 
datasets need to be preprocessed and encoded to an ontology prior to being integrated 
with other datasets. 
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BioWarehouse: Relational Integration of Eleven

Bioinformatics Databases and Formats

Peter D. Karp, Thomas J. Lee, and Valerie Wagner

SRI International, Menlo Park, CA USA

Abstract. BioWarehouse is an open-source project for integrating bioin-
formatics databases within a relational database warehouse. It has two
key features. A comprehensive database schema models many different
bioinformatics datatypes. A set of loader tools permits loading of pub-
lic bioinformatics databases, and of standard bioinformatics formats, into
that database schema. Thus, multiple databases can be queried together
within a single common schema. The supported databases are BioCyc,
CMR, ENZYME, Eco2DBase, Genbank, Gene Ontology, KEGG, NCBI
Taxonomy, and UniProt. The supported formats are BioPAX (protein in-
teractions subset only) and MAGE-ML.

1 Introduction

The BioWarehouse project [1,2,3] is pursuing a physical integration approach
to the database integration problem for bioinformatics. In addition, BioWare-
house provides a relational database system for SQL query access to individual
bioinformatics databases.

BioWarehouse can be implemented on Oracle and MySQL relational database
management systems (DBMSs). Users can download the BioWarehouse software
and set up a local implementation of BioWarehouse that contains loaded data
of interest.

Why did we choose the warehouse approach instead of the multidatabase
(federated) approach? The warehouse approach has the following advantages.

– The multidatabase approach assumes that the databases to be integrated
are available in a queryable, network-accessible DBMS, which is often not
the case in bioinformatics (such as for databases that are available only via
downloadable files and/or as clickable web sites).

– Most sites that do provide their databases in a queryable DBMS do not allow
remote query access because of security and loading concerns.

– Users often want to control data stability; they want to control when the
data change so that they can perform reproducible experiments. In the mul-
tidatabase approach, data change at the discretion of the maintainers of the
source data. On the other hand, the multidatabase approach does ensure
access to the latest version of the data for those users that need such access.

– The bandwidth of the internet limits the throughput of querying and result
returning.

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, pp. 5–7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– Users need to capture and integrate locally produced data of different types,
which requires a local database.

2 The BioWarehouse Schema

The first component of BioWarehouse is a set of relational database schema
definitions that model many bioinformatics datatypes. The schema is stored in a
format that can be automatically converted to an Oracle schema, and a MySQL
schema. The datatypes covered by the BioWarehouse schema include:

– Replicons, genes, and proteins
– Pathways, reactions, and small molecules
– Sequences and sequence features
– Controlled vocabularies
– Gene expression data
– Protein expression data
– Flow cytometry data
– Organisms and taxonomic relationships
– Results of computations, such as sequence matches
– Citations
– Links to external databases

An important aspect of the BioWarehouse approach is that data of the same
type from different source databases is loaded into the same BioWarehouse ta-
bles. For example, protein data, be it from UniProt, KEGG, or BioCyc, is loaded
into the same protein table within BioWarehouse. This approach allows all data
of a given type to be queried together within the same tables.

The schema also models the source databases themselves. Every BioWare-
house object (e.g., a protein) is registered within the source database from which
it was loaded. Multiple versions of a given dataset (e.g., KEGG) can be loaded
side by side within a BioWarehouse instance.

3 The BioWarehouse Loaders

BioWarehouse loaders parse a source dataset, and load the contents of the
dataset into appropriate BioWarehouse tables. For example, the BioCyc loader
parses BioCyc data files describing genes, proteins, pathways, reactions, and
small molecules, and load those data into a BioWarehouse instance. To date all
loaders have been written in either the C or the Java language. We generally
prefer to work with XML-format input files when they are available, because
they are typically easier to parse than are other file formats invented by bioin-
formatics researchers.

BioWarehouse loaders exist for the following bioinformatics databases: Bio-
Cyc, CMR, ENZYME, Eco2DBase, Genbank, Gene Ontology, KEGG, NCBI
Taxonomy, and UniProt. BioWarehouse loaders exist for the following bioinfor-
matics formats: BioPAX (protein interactions subset only) and MAGE-ML.
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Documentation is provided for each BioWarehouse loader that specifies the
format it accepts, and the data transformations it applies. That is, the docu-
mentation describes for fields in the input file, what columns in BioWarehouse
tables those fields are mapped to.

4 Discussion

BioWarehouse is in active use at SRI for several projects. The BioCyc project
generates high-throughput pathway predictions by loading hundreds of genomes
from the CMR database into BioWarehouse, and then processing those genomes
through a pathway prediction pipeline. The Pathway Tools project uses BioWare-
house to extract subsets of data from UniProt for use by the pathway hole filler
component of Pathway Tools. Our enzyme genomics project has used BioWare-
house to find which enzymes with known biochemical activities have no associ-
ated sequence information.

We would be grateful for contributions of BioWarehouse extensions by the
user community, such as new BioWarehouse loaders.
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Abstract. This paper concerns the research topic of data integration
in the life sciences. The paper presents no technical results, but rather
provides a classification of research activities in terms of the contributions
they seek to make to the life sciences, bioinformatics or computer science.

1 Introduction

Research involving data integration in the life sciences is diverse in nature, being
conducted by researchers with different backgrounds and objectives. Research
can be classified into the five areas represented by the overlapping circles in
Figure 1, which in turn can be characterised (left-to-right) as follows:

Life Science for its own sake: The use of informatics to obtain biological in-
sights. Typically, where the aim is to obtain insight into some biological sys-
tem or experimental method, existing informatics techniques are deployed.
Results are published in the life sciences literature (e.g. [2]).

Bioinformatics for Life Science: The use of novel bioinformatics to learn
specific biological lessons. Such an activity requires the development of a
novel result in bioinformatics to enable a specific biological system or tech-
nique to be better understood. Results are typically published in the life
sciences or computational biology literature (e.g. [7]).

Bioinformatics for its own sake: The development of novel generic (organ-
ism independent) bioinformatics techniques. Typically, the new technique is
not widely applicable outside the life sciences, and results are not necessarily
accompanied by new insights into biological systems. Results are typically
published in the biotechnology or bioinformatics literature (e.g. [6]).

Bioinformatics for Computing: The use of the life sciences as a source of
challenging computing problems. Results are typically published in the bioin-
formatics or computing literature (e.g. [3]).

Computing for its own sake: Computing researchmotivatedby or illustrated
using biological problems. Results are typically published in the computing
literature (e.g. [1]).

The diverse range of types of result (from discoveries in the life sciences to
generic techniques in computer science) from research under the heading of “data
integration in the life sciences” has a number of implications for researchers
working in the area, as discussed in the next section.

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, pp. 8–10, 2008.
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Life
Science

Bioinformatics Computer
Science

Fig. 1. Research areas of relevance to data integration in the life sciences

2 Observations

The following observations can be made about research on data integration in
the life sciences:

Individuals: Few researchers are successful across the full range of areas in
Figure 1, and those who are generally play a supporting role at one or both
edges. This is neither surprising nor problematic, as it enables interdisci-
plinary teams to publish across the full spectrum.

Projects: Few projects are successful across the full range of areas in Figure
1, and those that are rarely apply the most novel computing when obtain-
ing biological results. Indeed, individual projects typically occupy one or a
few (adjacent) segments in Figure 1. This is not surprising, as deploying
emerging computational techniques on applications that require dependable
outcomes is a risky strategy. It may be considered problematic, however, as
an interdisciplinary team that includes both computer and life scientists may
be unlikely to generate research of direct interest to all its participants. Fur-
thermore, the effectiveness of new computing techniques may not be subject
to much practical evaluation in relevant applications.

The “Data Integration in the Life Sciences” (DILS) Workshop series is prob-
ably most naturally located in the Bioinformatics for Computing segment de-
scribed in Section 1. If so, then the community is principally seeking to refine
computational techniques for data integration in the light of challenges iden-
tified in life science applications. In common with other research in computer
science, techniques under current investigation are not the finished article, and
implementations are typically early prototypes or proofs of concept; as a conse-
quence, results generated by this community are often not ready for large-scale
deployment.

Overall, reflecting the focus on novel data integration techniques, there is
little evidence of technical consolidation. The diversity of research reflects both
differences in requirements in different areas of the life sciences, and the fact that
various aspects of data integration in the life sciences are difficult in ways that
are hard to address systematically. For example, independently developed and
autonomously maintained data resources often provide integrators with rapidly
changing models and interfaces, inconsistent descriptions of common concepts,
incompatible identification schemes, etc. Such features make high-quality data
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integration solutions (e.g. through warehouses or distributed query processing)
costly to develop and maintain.

As a result, there is increasing interest in approaches with reduced up-front
costs (e.g. [4]), which in turn often leads to more loosely coupled models. In the
life science, a particular focus has been on workflow technologies, in which ser-
vices interoperate, but data need not be “integrated” in any meaningful sense.
Such platforms provide consistent access to data and computational resources,
and may yet provide a framework within which different data integration tech-
nologies can be brought together, accommodating as they do both pay-as-you-go
[8] and plan-ahead [9] integration. However, understanding the relative costs and
benefits of different data integration techniques continues to be a challenging un-
dertaking [5], and no less so in the life sciences than elsewhere.

As such, data integration in the life sciences potentially involves both fun and
frustrations while trying to produce findings: fun in that the area is a source of
worthwhile problems involving diverse collaborators; and frustrations in that the
domain continues to manifest problems that elude elegant solutions. The latter
in turn means that individual projects rarely generate findings of value across
the range depicted in Figure 1.
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acknowledge.
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Abstract. Ontologies are heavily developed and used in life sciences and  
undergo continuous changes. However, the evolution of life science ontologies 
and references to them (e.g., annotations) is not well understood and has re-
ceived little attention so far. We therefore propose a generic framework for ana-
lyzing both the evolution of ontologies and the evolution of ontology-related 
mappings, in particular annotations referring to ontologies and similarity 
(match) mappings between ontologies. We use our framework for an extensive 
comparative evaluation of evolution measures for 16 life science ontologies. 
Moreover, we analyze the evolution of annotation mappings and ontology map-
pings for the Gene Ontology. 

Keywords: Ontology evolution, ontology matching, mapping evolution. 

1   Introduction 

Ontologies become increasingly important in life sciences. Usually, they provide a 
harmonized vocabulary describing and structuring a specific domain of interest, e.g., 
molecular functions of proteins or the anatomy of a species. The vocabulary consists of 
concepts, which are typically structured within trees or acyclic graphs where the con-
cept nodes are interconnected by "is-a" and "part-of" relationships. Biological objects, 
such as genes and proteins, can be semantically and uniformly described or annotated 
by ontologies by associating them with the respective ontology concepts. For example, 
proteins are associated to concepts of the Gene Ontology to describe their protein func-
tions and to specify processes they are involved in. The proliferation of ontologies has 
also generated interest in interrelating different ontologies by so called ontology map-
pings [1,2,7], e.g., to see which molecular functions are involved in which biological 
processes or which functions are localized on which cellular component.  

Due to the rapid development of life science research we observe that ontologies 
evolve continuously, i.e., they are frequently changed to incorporate new domain 
knowledge into them. Typical ontology modifications include the addition of new 
concepts and new relationships or the deletion of outdated concepts and relationships. 
To still provide some stability for applications and users of ontologies, the ontology 
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developers typically support a version concept. An ontology version represents the 
state of the ontology at a specific point in time (release date). While older ontology 
versions remain stable (unchanged), a new ontology version may reflect an arbitrary 
number of changes. However, these changes, e.g., deletions, may impair the correct-
ness of previous use cases of the ontology within annotations or ontology mappings. 
Hence, annotations and ontology mappings affected by ontology changes may have to 
be identified and corrected. Furthermore, new knowledge represented by added con-
cepts and added relationships should be utilized as quickly as possible.  

So far, the evolution of life science ontologies and change impact for annotations 
and ontology mappings has received almost no attention and is therefore not well 
understood. As a first step in dealing with ontology evolution in life sciences we 
therefore propose to analyse how existing ontologies evolve, e.g., to answer immedi-
ate questions such as “How volatile (stable) are different ontologies?” “What is the 
frequency of different types of modifications?” and “Which structural changes occur 
within ontologies?”. Furthermore, we want to analyze the consequences of ontology 
changes, e.g., to what degree do they imply changes of ontology-based annotation and 
previously determined ontology mappings.  

To that end, we make the following contributions in this paper: 

• We propose a generic framework allowing us to systematically study the 
evolution of ontologies and instance data sources (e.g., representing biologi-
cal objects such as proteins), as well as the evolution of ontology-related 
mappings, i.e., annotation mappings and ontology mappings. The framework 
supports the computation of several general measures to describe individual 
ontology versions and mappings as well as their evolution. 

• In a comprehensive evaluation, we apply the framework to 386 versions of 
16 life science ontologies including the sub-ontologies of Gene Ontology and 
the NCI (National Cancer Institute) thesaurus. In particular, we use the pro-
posed framework measures to analyze the major change types and other evo-
lution characteristics. 

• We further evaluate the evolution of annotation mappings and correlate be-
tween changes of instances/ontologies and the ontology-based annotations. 
Furthermore, we analyze the impact of ontology evolution to differently gen-
erated ontology mappings. 

The analysis results are expected to be helpful for both ontology developers and 
ontology users to better understand the consequences of ontology changes. Further-
more, the results may help guide the development of algorithms to generate mappings 
that remain comparatively robust against ontology changes. 

The rest of the paper is organized as follows. In Section 2 we introduce a general 
framework to measure different types of evolutionary changes of ontologies, their asso-
ciations to biological objects and on interconnecting ontology mappings. In Section 3 
we apply the framework and show results for a selected set of life science ontologies 
whereas Section 4 illustrates the evolution results of protein objects established ontol-
ogy mappings we observed. Section 5 discusses related work. We finally conclude and 
outline future work. 



 Analyzing the Evolution of Life Science Ontologies and Mappings 13 

2   Evolution and Measurement Framework 

Our evolution framework distinguishes between two basic types of evolution as illus-
trated in Figure 1. On the one side, we investigate the evolution in single sources, 
specifically ontologies (1) and instance sources (2). For both source types, the evolu-
tion is reflected in a series of versions. On the other side, we consider the evolution of 
mappings. Such mappings exist between versions of different instance sources (in-
stance-instance-mapping (3)), between versions of instance sources and ontologies 
(annotation mapping (4)) and between versions of different ontologies (ontology 
mapping (5)). In the following we define the models and measures of our framework. 
A simple example (Figure 2) will illustrate these models and their evolution. 

Sl+1 Rk+1 

instance-instance

mapping

annotation

mapping

(Rk, Xi, A )

ontology

mapping

(Xi, Yj, A, M)

(2) (2)

(1) (1)

annotation

mapping

(Sl, Yj, A)
(4) (4)

(5)

Ontology mapping
Level

Ontology
Level

Annotation
Mapping

Level

Instance
Level

Xi+1 Yj+1

ontology

Xi = (Ci, Ri, ti )
ontology

Yj = (Cj, Rj, tj )

... ...

...

... ...

... ...

...

instance source

Rk = (Ik, tk )
instance source

Sl = (Il, tl )

(3)

 

Fig. 1. Evolution of sources (1, 2) and mappings (3, 4, 5) 

2.1   Framework Models 

2.1.1   Ontology Model 
An ontology ONv = (C, R, t) is defined by its name ON, a version number v, concepts 
C = {c1, …, cm}, relationships R = {r1, …,rn} and a creation timestamp t. Concepts 
represent entities of the domain to be modeled; they are interconnected by the rela-
tionships in R, e.g., is-a and part-of relationships. Concepts with no relationships to 
any super concept act as the roots ⊆ C of ONv. Together, C, R and the roots form the 
ontology’s graph structure which is assumed to be a directed acyclic graph (DAG). 

A concept can have a varying number of attributes. Typical attributes in biomedi-
cal ontologies are accession ID, concept name, concept synonyms, concept definition, 
and obsolete status. In our evolution framework we heavily take into account acces-
sion ID and obsolete status information. The accession IDs unambiguously identify 
concepts and can be used to determine new and deleted concepts when comparing 
different versions of an ontology. Furthermore, these IDs are used within annotation 
and ontology mappings. The obsolete status is not generally supported but allows the 
specification of outdated concepts which may still be in use but should not be used 
anymore for new applications.  

R defines directed binary relationships between concepts. We distinguish between 
three types of relationships, namely is-a (Ris_a), part-of (Rpart_of) and miscellaneous 
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(Rmis). As we will see, is-a and part-of relationships are the most common relationship 
types in biomedical ontologies. Other (“miscellaneous”) relationship types are spe-
cific to ontologies of a certain domain, e.g., anatomy, chemistry or molecular biology.  

2.1.2   Instance Model 
An instance source ISv = (I, t) of version number v consists of a set of instances I = 
{i1, …, in}, e.g., molecular biological objects such as genes or proteins, and a creation 
timestamp t. Instances are described by a set of attributes including an accession ID 
attribute and IS-specific attributes. The ID attribute is used in mappings between dif-
ferent instance sources (instance-instance mapping) and in annotation mappings.  

2.1.3   Annotation Mapping Model 
An annotation mapping AM = (ISu, ONv, A) describes a mapping between an instance 
source IS of version u and an ontology ON of version v. The mapping itself, denoted 
by A, is a set of binary associations between instances I of ISu and concepts C of ONv. 
A single association or correspondence aj = (ij, cj) ∈A annotates an instance item ij 
∈ I with an ontology concept cj ∈C. Note that annotation mappings are (implicitly) 
versioned by the use of versioned instance sources and versioned ontologies. Hence, 
the combination of the version numbers u and v can be thought of as the version num-
ber of the mapping.  

2.1.4   Ontology Mapping Model 
We define an ontology mapping OM = (Xu, Yv, A, M) between two different ontology 
versions Xu and Yv as a set of correspondences A based on a match algorithm M. A 
single correspondence nk = (xk, yk, simk)∈A comprises two ontology concepts (con-
cept xk of Xu, concept yk of Yv) and a similarity value simk. The similarity value indi-
cates the strength of similarity between two ontology concepts and is typically a  
numerical value from the interval [0,1]. Similarity values are determined by an ontol-
ogy match algorithm M. For example, metadata-based matching algorithms use meta-
data for matching such as concept names and often apply string similarity measures to 
estimate the similarity of ontology concepts. On the other hand, instance-based 
matchers may consider the number of shared instances, i.e., instances associated to 
both ontology concepts, to compute a similarity value [7].  

Similar to annotation mappings, ontology mappings are implicitly versioned by the 
use of versioned ontologies.  

2.1.5   Common Evolution Model 
In order to analyze the evolution of single sources and of mappings, we define a ge-
neric evolution model that is applicable to all defined models, in particular ontologies, 
instances, annotations and ontology mappings. The basis of our evolution model are 
object sets Ovi of a version vi of a source that evolves. Possible objects are ontology 
concepts or relationships (ontology evolution), instance data (instance evolution), 
annotation associations (annotation mapping evolution) and ontology correspon-
dences (ontology mapping evolution). 

We focus on three change operations that may occur during evolution: add, delete 
and toObs. Whereas add is used to insert new objects in a source or mapping, the 
delete operation directly removes objects which are outdated or no longer required. 
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ToObs is a special operation preferentially used in ontologies to mark objects as obso-
lete. In contrast to delete, obsolete objects remain in an evolved source. For simplicity 
and to preserve the applicability of our evolution model to both ontologies and map-
pings, we do not consider more complex evolution operations in this study, e.g., 
moves of concepts within is-a /part-of hierarchies or changes of relationship types. 

To quantify the evolution behavior, for each change operation we determine the 
sets of affected objects in the considered source and mapping versions:  

• addvi,vj = Ovj / Ovi: added objects between version vi and vj 
• delvi,vj = Ovj / Ovi: deleted objects between version vi and vj 
• toObsvi,vj = Ovj,obs ∩ Ovi,nonObs: objects that were marked as obsolete be-

tween version vi and vj. Here, the subsets Ovi,nonObs and Ovi,obs are used to 
distinguish between normal and obsolete objects in a version vi, together 
they form the set of all objects Ovi in version vi.  

These sets can be quite easily determined for existing ontologies, instance sources, 
and mappings by analyzing and comparing the accession attributes of objects. For 
example, if an object ID is present in a newer version of a source and not in the older 
one, we assign this object to the add set, and vice versa for the delete set.  

A simple yet comprehensive example for both ontology evolution and mapping 
evolution is shown in Figure 2. The example captures the evolution of two ontologies 
X (X1 to X2) and Y (Y1 to Y2), the evolution of one instance source I (I1 to I2), the 
evolution of two annotation mappings I-X (I1-X1 to I2-X2) and I-Y (I1-Y1 to I2-Y2), 
and the evolution of one ontology mapping X-Y (X1-Y1 to X2-Y2). So in ontology 
version X2 there is one new concept, x4, while concept x3 has been declared as  
obsolete. For x4, there is a new instance annotation (i4-x4) as well as a new ontology 
correspondence (x4-y5). For x3, the previous instance annotation i3-x3 and ontology 
correspondence x3-y4 have been deleted in the new mappings. 

  source      add      del   toObs

ontology 

X
{x4} {} {x3} 

ontology 

Y
{y5} {y3} {} 

instance 

source I 
{i4} {i3} {} 

annotation 

mapping 
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annotation 
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I-Y 
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instance source
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annotations

I1 - X1,Y1

I2 - X2,Y2

ontology 

mapping 

X-Y 

{x4-y5} {x3-y4} {} 

 

Fig. 2. Evolution example with ontologies (X,Y), instance sources (I), annotation mappings (I-
X,Y) and an ontology mapping (X-Y) 
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2.2   Framework Measures 

Based on the introduced framework, we determine a variety of statistical measures on 
the investigated sources (ontologies, instance sources) and mappings, as well as on 
their evolution and growth characteristics. We first present the source- and mapping-
specific measures, followed by the evolution and growth measures. 

2.2.1   Descriptive Statistics for Sources and Mappings 
For all kinds of object sets (instances, concepts, relationships, correspondences), we 
consider their cardinality in a given version of an instance source, ontology or map-
ping. For ontologies, we additionally determine structural characteristics such as the 
used relationship types (is-a, part-of), concept types (obsolete or non-obsolete, leaf or 
inner concepts), in-degrees and out-degrees, as well as the number of paths and path 
lengths: 

|Ovi|
number of objects in version vi of a source or mapping 
O∈ {ontology concepts C, ontology relationships R, instance 
data I, annotation mapping A, ontology mapping A} 

|Cleaf|, |Cinner| number of leaf and inner concepts 
|Cobs|, |CnonObs| number of obsolete and non obsolete concepts 

 |Ris_a|, |Rpart_of|, |Rmis| number of is-a, part-of or miscellaneous relationships 
∅ din = |Cinner| / (|Ris_a|+|Rpart_of|) average in-degree of inner concepts 

∅ dout = |C| / (|Ris_a|+|Rpart_of|) average out-degree of concepts 

∅ ppc, ∅ ppl
average number of paths per concept or per leaf concept (path 
as way to a root concept using is-a or part-of relationships) 

∅ pl, ∅ plleaf average path length of all concepts or leaf concepts 

For mappings, let XA,u⊆Xu and YA,v⊆Yv be two object sets of version u and v, such 
that a mapping A interrelates each element of XA,u with at least one element of YA,v 
and each element of YA,v have at least one counterpart in XA,u. Then, we can deter-
mine the relative coverage of Xu and Yv for mapping A by XA,u and YA,v, respectively, 
i.e., the fraction of objects of Xu (Yv) for which at least one counterpart (and thus 
correspondence) in mapping A exists. 

  

covA,Xu = |XA,u| / |Xu|
covA,Yv= |YA,v| / |Yv|

relative coverage of objects Xu and Yv by the mapping A  

2.2.2   Evolution and Growth Statistics 
Our measures make use of the generic evolution model to compute evolution statistics 
for all evolution types (ontologies, instance sources, mappings). To determine the 
number of changes or changed objects we either directly compare two versions vi and 
vj of a source or mapping. Alternatively, we quantify the changes with respect to a 
certain time interval, e.g., for an entire observation period p or a regular time interval t 
within p, e.g., per month or per year. 

  

Addvi,vj = |addvi,vj| number of added objects between version vi and vj 

Delvi,vj = |delvi,vj| number of deleted objects between version vi and vj 
Obsvi,vj = |toObsvi,vj| number of objects that changed to obsolete between version vi and vj 

 Addp,t  Delp,t  Obsp,t  
average number of added / deleted / obsolete objects per time interval 
t within p 
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Based on these basic frequencies we determine relative fractions of newly added 
and deleted objects as well as an add-delete ratio (adr) between two versions. Further, 
we quantify relative fractions relating to a certain time interval t within a period p: 

  

adrvi,vj = Addvi,vj /(Delvi,vj + Obsvi,vj) add-delete ratio for changes between version vi and vj 

||
,

,
vj

vjvi
vjvi O

Add
fracadd =−

 fraction of objects in version vj that have been added between 
version vi and vj   

||
,

,
vi

vjvi
vivj O

Del
fracdel =−

 fraction of objects in version vi that have been deleted between 
version vi and vj  

||
,

,
vi

vjvi
vivj O

Obs
fracobs =−

 fraction of objects in version vi that have been marked as obsolete 
between version vi and vj 

add-fracp,t   del-fracp,t   obs-fracp,t 
average fractions of added / deleted / obsolete objects per time 
interval t within p based on the version-related frac measures 

We further define growth rates  

growthO,vi,vj = |Ovj| / |Ovi| ∈ [0,¶] ⊆ R  

for most of the measures above as the ratio between the objects O (O∈{ontology 
concepts C, ontology relationships R, instance data I, annotation mapping A, ontology 
mapping A}) of version vj and vi. The growth rate describes an increase when the rate 
is greater than 1, a decrease when the rate is less than 1 or no change for growthvi,vj=1. 
Moreover, the growth rate can also be determined for relative measures, such as frac-
tions or coverages, e.g., an increase from 50% to 60% for the ontology coverage be-
tween two versions of an ontology mapping corresponds to a growth rate of 1.2. 

3   Analysis of Ontology Evolution 

We study the evolution of ontologies of different life science domains, ranging from 
popular Gene Ontology (GO) [3] and NCI Thesaurus [12] to more specific ontologies 
of the OBO foundry [16], e.g., SequenceOntology or ZebrafishAnatomy. In order to 
comparatively analyze these ontologies, we set up a central repository with a generic 
schema suitable for management of heterogeneous ontologies and their versions. 
Overall, we integrated 386 versions of 16 currently developed life science ontologies.  

In the following, we first give an overview of the analyzed ontologies and their 
versions. We then use the introduced measures to study the evolution behavior of the 
ontologies including structural ontology changes. Exemplary evolution trend charts 
for GO Biological Processes and Molecular Functions will be presented in Section 
4.2. Detailed information and evolution trend charts for all analyzed ontologies can be 
found in [5] and online (http://dbs.uni-leipzig.de/ls_ontology_evolution). 

3.1   Overview and Versioning Aspects 

Table 1 lists the ontologies and gives details about their size, the number of versions 
during the observation period, the growth ratio as well as domain and use characteris-
tics. For clarity, we group the analyzed ontologies into 3 groups (large, medium, 
small) based on their current number of concepts |C|. Our evaluation considers ontol-
ogy versions for an observation period of 45 months, from May 2004 until Feb. 2008. 
The timestamps tstart (tlast) of the first (latest) version and the number of versions (k)  
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Table 1. Overview and versioning statistics of analyzed ontologies. Size categories -  small: |C| 
< 1000, medium:  1000 < |C| < 10000, large:  |C| > 10000 

Ontology size |C| start |C| last grow |C|, start, last t start t last k characteristics, domain and use

NCI Thesaurus 35,814 63,924 1.78 May. 04 Dec. 07 39 broad coverage of cancer domain

GeneOntology 17,368 25,995 1.50 May. 04 Feb. 08 44 aggregat ion of all GO sub ontologies

-- Biological Process 8,625 15,001 1.74 May. 04 Feb. 08 44 annotat ion of gene products (biological role)

-- Molecular Function 7,336 8,818 1.20 May. 04 Feb. 08 44 annotation of gene products (molecular funct ion)

-- Cellular Components 1,407 2,176 1.55 May. 04 Feb. 08 44 annotat ion of gene products (cellular locat ion)

ChemicalEntities 10,236 18,007 1.76 Oct. 04 Jan. 08 28 chemical compounds of biological relevance

FlyAnatomy 6,090 6,222 1.02 Nov. 04 Dec. 07 16 anatomy of Drosophila melanogaster

MammalianPhenotype 4,175 6,077 1.46 Aug. 05 Jan. 08 15 terms for annotating mammalian phenotypic data

AdultMouseAnatomy 2,416 2,745 1.14 Aug. 05 Sep. 07 15 adult anatomy of the mouse (Mus)

ZebrafishAnatomy 1,389 2,172 1.56 Nov. 05 Oct. 07 12 anatomy and development of the Zebrafish

Sequence 981 1,463 1.49 Aug. 05 Feb. 08 26 structured CV for sequence annotat ion

ProteinModification 1,074 1,128 1.05 Jun. 06 Nov. 07 14 description of protein chemical modifications

CellType 687 857 1.25 Jun. 04 Jun. 07 19 cell types from prokaryotes to mammals

PlantStructure 681 835 1.23 Jul. 05 Feb. 08 22 plant morphological and anatomical st ructures

ProteinProteinInteraction 194 819 4.22 Aug. 05 Feb. 08 19 annotat ion of protein interact ion experiments

FlyBaseCV 658 693 1.05 Nov. 05 Apr. 07 7 used for various aspects of annotation by FlyBase

Pathway 427 593 1.39 Nov. 05 Jan. 08 22 CV for pathways, annotation of gene products

Overall 82,190 131,530 1.60 386

small

large

medium

 

provide information about the versioning rate of an ontology, i.e., how often an ontol-
ogy releases versions and how long they are actively used. While some ontologies, 
particularly the Gene Ontology, currently release versions every day we consider at 
most one version per month (for several versions per month, we pick the first one). 
We observe that the oldest and most frequently released ontologies are the two largest 
ontologies, NCI Thesaurus and Gene Ontology. Other ontologies such as FlyBaseCV 
or CellType have not been updated since a longer period (6-8 months) which may 
indicate that these ontologies have reached a near-final state. The average number of 
versions per ontology is 25, i.e., a version is typically current for less than 2 months. 

In terms of number of concepts, we observe a considerable growth during the ob-
servation period. On average, the number of concepts has increased by 60% during 
the last 45 months; the maximum (minimum) growth rate is 4.22 (1.02). The largest 
ontology, NCI Thesaurus has increased its size by 80% to almost 64,000 concepts. 
The largest and fastest growing GO subontology is Biological Processes (74% in-
crease); on the other hand, the number of Molecular Functions concepts has merely 
increased by 20% during the observation period. 

Table 2 shows more detailed and time-normalized statistics on the evolution be-
havior of the considered ontologies. In particular, it indicates the average number of 
newly added, deleted and obsolete concepts per month for both the entire observation 
period and the last year only. In addition, the relative fractions of concepts are speci-
fied which are added, deleted or declared obsolete per month. 

We observe that the largest ontologies experience the highest numbers in changes. 
On average, they have approx. 360 (25) additions (deletions) per month compared to 
approx. 86 (6) additions (deletions) in all analyzed ontologies. Furthermore, the study 
shows that additions are the dominant change operation for all ontologies. Still, some 
ontologies experience a significant number of deletions, e.g., ChemicalEntities and 
Gene Ontology. The add-delete ratio (adr) indicates the relative frequency of these 
two main change types. NCI Thesaurus has the maximal value of 42, indicating that 
there are 42 times more additions than deletions or new obsolete cases. On the other  
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Table 2. Evolution of analyzed life science ontologies (interval t = 1 month) 

Ontology Add Del Obs adr add-frac del-frac obs-frac Add Del Obs

NCI Thesaurus 627 2 12 42.4 1.3% 0.0% 0.0% 416 0 5

GeneOntology 200 12 4 12.2 0.9% 0.1% 0.0% 222 20 5

-- Biological Process 146 7 2 16.2 1.2% 0.1% 0.0% 133 10 2

-- Molecular Function 36 3 2 6.8 0.4% 0.0% 0.0% 69 7 3

-- Cellular Components 18 2 0 8.9 1.0% 0.1% 0.0% 19 3 0

ChemicalEntities 256 62 0 4.1 1.8% 0.5% 0.0% 384 67 0

FlyAnatomy 5 1 1 3.3 0.1% 0.0% 0.0% 6 0 0

MammalianPhenotype 65 2 9 6.0 1.2% 0.0% 0.2% 74 2 3

AdultMouseAnatomy 11 0 0 30.9 0.4% 0.0% 0.0% 1 0 0

ZebrafishAnatomy 33 5 1 5.5 1.8% 0.3% 0.1% 45 2 1

Sequence 19 3 2 4.1 1.5% 0.3% 0.2% 19 0 0

ProteinModification 5 2 1 1.5 0.4% 0.2% 0.1% 7 0 2

CellType 5 1 0 2.8 0.7% 0.2% 0.1% 1 0 0

PlantStructure 5 0 1 6.1 0.7% 0.0% 0.1% 3 0 0

ProteinProteinInteraction 21 0 0 41.7 2.7% 0.0% 0.2% 4 0 0

FlyBaseCV 1 0 1 2.1 0.2% 0.0% 0.1% 0 0 0

Pathway 7 1 0 7.9 1.3% 0.2% 0.0% 6 2 0

Full period (May. 04 - Feb. 08) Last year (Feb. 07 - Feb. 08)

 

 
hand, for ChemicalEntities this ratio is merely 4, i.e., about 20% of the changes are 
deletes. The relative change fractions reveal that some small and medium ontologies 
have high evolution rates. In terms of additions, ProteinProteinInteraction has the 
highest relative change frequency (2.7% new concepts per month). 

Another interesting observation is the usage of the obsolete paradigm in different 
ontologies. Some ontology designers do not mark outdated ontology concepts as ob-
solete, but strictly delete them, e.g., ChemicalEntities or AdultMouseAnatomy. Most 
ontologies (13 of 16) follow a hybrid approach, i.e., they use both to-obsolete and 
delete operations. Some ontologies (NCI Thesaurus, MammalianPhenotypes), per-
form few deletes but primarily use the obsolete status to mark outdated concepts. 

Comparing the evolution rates of the last year with the ones of the overall observa-
tion period allows us to see recent evolution trends for the different ontologies. A first 
group of ontologies exhibits high evolution rates in both periods, e.g., NCI Thesaurus, 
GO or MammalianPhenotype. This indicates that the knowledge in the domains of 
these ontologies is continuously evolving and that these ontologies refer to active 
research fields. A second group of ontologies has considerably higher evolution rates 
in the last year indicating an increased research activity in the respective domains, 
e.g., for ChemicalEntities or GO Molecular Function. Finally, we discover ontologies 
with few changes in the recent past, e.g., AdultMouseAnatomy, CellType or Fly-
BaseCV. Work on these ontologies may have almost been finished so that rather sta-
ble ontology versions can be used. 

3.2   Influence of Evolution on Ontology Structures 

Due to space limitations, we analyze the evolution of structural properties only for the 
largest ontologies. Table 3 summarizes structural measures for the first and last ver-
sion of the considered 6 ontologies as well as the resulting growth rates (lower third 
of the table). We consider the evolution in the relative share of leaf (vs. inner) nodes, 
the number of relationships, the distribution of is-a, part-of and other relationships, as 
well as in the concept node degrees and number of paths.  
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Table 3. Changes in ontology structures 

Ontology |C leaf | (%) |R| |R isa| (%) |R partof | (%) |R mis | (%) ∅  d out ∅  d in ∅  pl leaf ∅  ppl 

NCI Thesaurus 79 41,281 100 1.2 5.6 8.2 3.3

GeneOntology 66 23,589 88 12 1.4 4.0 7.3 3.7

-- Biological Process 52 13,358 85 15 1.5 3.2 8.0 7.1
-- Molecular Function 82 8,459 100 1.2 6.4 5.3 1.4

-- Cellular Components 67 1,772 52 48 1.3 3.8 5.5 1.8
ChemicalEntities 70 11,593 100 1.1 3.8 8.3 2.3

MammalianPhenotype 68 4,620 100 1.1 3.4 5.5 1.5

NCI Thesaurus 79 72,466 100 1.1 5.4 8.0 3.0

GeneOntology 60 41,396 88 12 1.6 3.8 8.6 22.9
-- Biological Process 46 27,141 84 16 1.8 3.3 8.8 38.7

-- Molecular Function 81 10,195 100 1.2 5.9 6.2 1.7

-- Cellular Components 64 4,060 79 21 1.9 5.0 8.3 52.6

ChemicalEntities 69 31,233 76 1 23 1.4 4.3 12 18.6

MammalianPhenotype 64 6,875 100 1.2 3.1 7.5 2.5

NCI Thesaurus 1.00 1.8 1.00 1.0 1.0 1.0 0.9

GeneOntology 0.91 1.8 1.00 1.03 1.2 1.0 1.2 6.2
-- Biological Process 0.89 2.0 0.99 1.06 1.2 1.0 1.1 5.5

-- Molecular Function 1.00 1.2 1.00 1.0 0.9 1.2 1.2

-- Cellular Components 0.95 2.3 1.51 0.44 1.5 1.3 1.5 28.7

ChemicalEntities 0.99 2.7 0.76 undef. undef. 1.3 1.1 1.4 8.0
MammalianPhenotype 0.95 1.5 1.00 1.1 0.9 1.4 1.7
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We observe that for the considered ontologies, the majority of concepts is repre-

sented by leaf nodes, i.e., these concepts are not further refined by is-a or part-of rela-
tionships. However, the relative share of leaf nodes has reduced during the observa-
tion period from about 70% to 67% indicating a corresponding increase of inner 
nodes and in structured knowledge. For one ontology, GO Biological Process, there 
are now even fewer leaf concepts (46%) than inner concepts due to a strong decline in 
the fraction of leaf nodes (“growth” rate 0.89). 

The number of relationships increased similarly or faster than the number of con-
cepts (Table 1) during the observation period. The largest increase occurred for 
ChemicalEntities (growth factor 2.7 for relationships vs. 1.76 for concepts). The con-
sidered ontologies are dominated by is-a relationships (ca. 91% of all relationships), 
while part-of (4%) and miscellaneous (5%) relationships are similarly infrequent1. 
Some ontologies are pure is-a hierarchies, e.g., NCI Thesaurus, GO Molecular Func-
tion or MammalianPhenotype. The biggest changes occurred for ChemicalEntities 
which started as a pure is-a ontology but introduced part-of and other relationship 
types in recent versions. We also observe interesting differences between the GO sub-
ontologies. While Molecular Function only uses is-a relationships, Biological Process 
and Cellular Components contain both is-a and part-of relationships. However, the 
relative share of part-of evolved differently: Biological Process now relies more on 
part-of than in the beginning (growth: 1.06) while Cellular Components has a sharp 
relative reduction for part-of (0.44). 

With respect to the in-degrees and out-degrees of concept nodes we notice little 
changes during the observation period, especially for is-a ontologies. The out-degrees 
of these ontologies is typically lower than 1.2, i.e., their concepts have mostly only 

                                                           
1 With respect to all 16 ontologies, the relative shares for is-a / part-of / miscellaneous relation-

ships are 86% / 7% / 7%.  
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one super concept. On the other side, ontologies such as GO Cellular Components or 
GO Biological Process have about two ancestor concepts per concept since they use 
is-a and part-of relationships in combination. Lastly, we look at the evolution of path 
lengths and number of paths in leaf concepts. We notice that except NCI Thesaurus 
all ontologies increased in their average path length of leaf concepts (up to 50%). The 
number of paths per leaf (∅ ppl) heavily increased, especially for ontologies which 
are not limited to is-a relationships (average growth rate: 14). The highest growth rate 
(28) occurred for the GO Cellular Components which apparently experienced a major 
restructuring as already observed for the development of is-a vs. part-of relationships.  

4   Evolution of Annotation and Ontology Mappings 

In further experiments we studied the evolution of the annotation and ontology map-
pings. We start with a short overview of the scenario we used in the evaluation before 
we describe the obtained results. 

4.1   Evaluation Scenario 

Figure 3 shows a schematic overview of the evaluation scenario. To reduce the  
complexity we focus on two ontologies, namely the GO subontologies Molecular 
Functions and Biological Processes. Both ontologies are usually used to describe 
properties of proteins, i.e., the function and process concepts of the ontologies are 
associated with proteins. We therefore evaluate protein instances, namely protein 
objects of the human species available in the data source Ensembl [6]. Furthermore, 
we analyze the annotation mappings, as provided by Ensembl, between these proteins 
and the two ontologies. To interrelate the two ontologies, we determine different 
ontology mappings using either metadata-based or instance-based match algorithms. 
We will give some more details below. 

Ontology

Level

Instance

Level Human Proteins of Ensembl. .

Protein annotation
regarding 

molecular functions

Protein annotation
regarding 

biological processes

Ontology Mapping

Level

Annotation

Mapping

Level

Biological Process

Release 25

Release 47
Release ...

Release 10.2004

Release 10.2007
Release ...

Version-specific
annotation mappings

Version-specific
ontology mappings

Molecular Function
Release 10.2004

Release 10.2007
Release ...

 

Fig. 3. Overview about the evaluation scenario 
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4.2   Evolution of Instance Source vs. Ontologies 

The Ensembl instances and annotations as well as the two ontologies underlie fre-
quent changes. The evaluation scenario includes 23 versions of Ensembl from Oct. 
2004 to Oct. 2007 (36 months). Table 4 shows the Ensembl release numbers together 
with their release month and year. While in 2004 and 2005 the Ensembl releases ap-
peared irregularly, since 2006 a new Ensembl release is created every two months. 
The Ensembl information is heavily based on the genome assemblies made public by 
NCBI; since 2004, three such assemblies (namely 34, 35, and 36) have appeared. 
Moreover, Table 4 also shows which GO releases have been used for the annotation 
mappings provided in Ensembl. As one can see, the annotations typically do not refer 
to the most recent but an older GO version. For example, the annotation mapping in 
Ensembl release 37 (Feb. 2006) refers to the GO version of March 2005, i.e., there is 
a time delay of 11 months. The delay has been reduced in recent Ensembl versions. 

Figure 4a illustrates the evolution of protein objects (total number, number of 
added and deleted instances) in Ensembl from Oct. 2004 to Oct. 2007. We observe 
that a new genome assembly (Nov. 2004, Apr. 2006) led to massive changes of pro-
tein objects. The change from version 34 to 35 of the genome assembly caused many 
protein additions and deletions while the total number of proteins remained almost 
unchanged. However, the change from version 35 to 36 (April 2006), resulted in five  
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Fig. 4. Evolution of instance data and ontologies 

 

Table 4. Release states of protein 
objects in Ensembl 

Time 
Ensembl
Release

NCBI
Genome

Used
GO 

Release
Oct. 25 34 
Nov. 26 02.2004

20
04

Dec. 27 
Feb. 28 
Mar. 29 
Apr 30 

09.2004

May 31 
July 32 
Sep. 33 
Oct. 34 
Nov. 35 

20
05

Dec. 36 
Feb. 37 

35

03.2005

Apr. 38 
June 39 
Aug. 40 
Oct. 41 

03.2006

20
06

Dec. 42 
Feb. 43 09.2006

Apr. 44 03.2007
June 45 05.2007
Aug. 46 20

07

Oct. 47 

36

06.2007
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times more added than deleted proteins and a corresponding jump in the total number 
of proteins (about 14,000 more proteins). Recently, there are more changes on protein 
objects during the utilization of genome assembly 36. 

For comparison, Figures 4b and 4c show the evolution of the two considered on-
tologies during the observation period since Oct. 2004. In contrast to the irregular 
evolution pattern of Ensembl, we observe that both ontologies experience a continu-
ous evolution with added and deleted/to-obsolete concepts, despite the existence of 
several peaks in the number of changes. With respect to the growth in the number of 
objects, the Molecular Function (MF) ontology evolved the least (growth 1.2) and 
slower than the number of protein instances (growth 1.39 for the entire observation 
period). The fastest growth is observed for the Biological Processes (BP) ontology 
(1.74). Furthermore, there are primarily additions and few deletes for the ontologies 
(add-delete ratios of about 7 and 16 for MF and BP, respectively) while there is sig-
nificant delete activity for the protein instances ( add-delete ratio of 1.6). 

4.3   Evolution on Annotation Mapping Level 

In this analysis we focus on the evolution of the two Ensembl annotation mappings 
proteins-MF and proteins-BP. For both cases, we compare two versions namely the 
annotation mappings of Ensembl release 25 (Oct. 2004, first in this study) with those 
of release 47 (Oct. 2007, last in this study). Table 5 shows the corresponding evolu-
tion measures, introduced in Section 2, in particular growth rates for the number of 
correspondences, proteins and ontology concepts as well as the add and delete frac-
tions (Table 5a). Table 5b shows coverage measures indicating which shares of the 
protein source and ontologies participate in the annotation mappings and how these 
shares changed (growth rates) between the two Ensembl versions. 

Table 5. Evolution of annotation mappings between Ensembl releases 25 and 47 

Corresp. Protein obj. Concepts 
growth growth growth 

Annotation
Mappings

add-frac del-frac add-frac del-frac add-frac del-frac
2.82 1.99 1.39 Protein-MF 83% 51% 68% 37% 32% 6% 
2.47 1.90 2.25 Protein-BP 81% 52% 68% 39% 58% 5% 

a) Growth rates of annotation mappings 

Protein obj. Concepts
cov25 cov47 cov25 cov47

Annotation
Mappings

growthcov growthcov

47% 67% 28% 35%Protein-MF 1.43 1.22 
43% 59% 20% 26%Protein-BP 1.36 1.39 

b) Coverage statistics  
 
We observe both annotation mappings show a rather similar evolution behaviour. 

For both mappings, the growth rates for the total number of correspondences (annota-
tion associations) of 2.82 and 2.47 are very high. These rates are not only higher than 
the growth for the total number of proteins or ontology concepts (factors between 1.2 
and 1.74, see above) but also higher than for the number of annotated proteins 
(growth factor 1.9 – 1.99) and used ontology concepts (1.39 – 2.25). Similarly, the 
add and delete activity is much higher for the correspondences than for the individual 
sources. So the latest annotation mappings of Ensembl release 47 contain 81-83% 
added (i.e., new) correspondences compared to the initial mapping versions of release 
25. Further, more than 50% of the original correspondences have been deleted. These 
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observations reveal that the use of ontologies in annotations grows faster than the 
ontologies and the number of instances but that there is also a high degree of instabil-
ity due to many deletions of associations.  

This is also confirmed by the coverage ratios shown in Table 5b. The much in-
creased number of correspondences led to an increased annotation coverage for pro-
teins. The coverage values increased during the observation period from 43-47% to 
59-67%, i.e., most proteins are now annotated with concepts of the Gene Ontology. 
Similarly, the coverage of the two ontologies within the annotation mappings im-
proved. Currently, 35% (26%) of the MF (BP) concepts have associated proteins. 

4.4   Evolution on Ontology Mapping Level 

On the ontology mapping level, we study the evolution of mappings between different 
versions of the MF and BP ontologies. Such semantic mappings are to specify which 
molecular functions are involved in which biological processes. The manual creation 
of such mappings is very time-consuming especially since the ontologies change so 
frequently. Hence we aim at a (semi-) automatic generation of mappings by using 
different match algorithms to generate likely correspondences between two ontology 
versions. For our study we consider four match algorithms of [7]. The first two match 
approaches are instance-based and assume that two concepts are related if they share a 
certain number of instances, i.e., associated protein objects in our scenario. The ap-
proach termed Base(5) assumes that two concepts match if there are at least 5 proteins 
which associate to both concepts. The Min(1.0) approach uses the so-called min simi-
larity and threshold 1.0, i.e., two concepts match if all instances associated to the 
concept with the smaller number of associations are also associated to the other con-
cept. The two other match approaches are metadata-based and utilize the similarity of 
concept names. We assume a correspondence between concepts when the string (tri-
gram) similarity of their names exceeds a certain threshold, e.g., 0.5 or 0.7; these 
mappings are named with Name(0.5) and Name(0.7). With these approaches we gen-
erated MF-BP mappings for the ontology versions of Feb. 2004 (associated with En-
sembl release 25) and June 2007 (associated with Ensembl release 47). 

Table 6a shows the growth rates for the ontology mappings between the two re-
leases as well as the relative fractions for add and delete. In the column “Corresp.” we 
also indicate the absolute number of correspondences in the two versions of the map-
pings (e.g., for Base(5) the number of correspondences increased from 2780 in the old 
version to 8973 in the new version of the ontology mapping, growth factor 3.2). Table 
6b shows the coverage rates for both ontologies and both mapping versions indicating 
to what degree the ontologies participate in the mappings. For example, for Base(5) 
the coverage of MF increased from 7% to 12% between the two versions.  

We observe that there are significant differences between the mappings generated 
by the different match algorithms and their evolution behaviour. For the name match-
ers, the number of correspondences is heavily dependent on the chosen threshold. A 
low threshold (0.5) matches many concepts (many correspondences) and leads a rela-
tively high coverage in the ontologies, however with the risk of many false corre-
spondences. A higher threshold (0.7), on the other hand, is very restrictive and 
matches only few concepts. On the other hand, this restrictive approach leads to the 
highest evolution stability with the lowest fraction for deleted correspondences (17%).  
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Table 6. Evolution of generated ontology mappings between molecular functions and biological 
processes of the GeneOntology source 

Corresp. Mol. Functions Biol. Processes
|C1|-|C2|, grow grow  grow 

Ontology
Mappings

add-frac del-frac add-frac del-frac add-frac del-frac
2780-8973, 3.2 1.8 2.3 Base(5) 78% 29% 52% 16% 62% 12% 
4795-11564, 2.4 1.4 2.1 Min (1.0) 80% 52% 41% 15% 62% 21% 
5434-15016, 2.8 2.1 1.4 Name (0.5) 77% 36% 57% 10% 44% 20% 

389-592, 1.5 1.3 1.3 Name (0.7) 45% 17% 32% 12% 34% 15% 
a) Growth rates of ontology mappings 

Mol. Functions Biol. Processes
cov25 cov47 cov25 cov47

Ontology
Mappings

growcov growcov

7% 12% 6% 8% Base(5) 1.7 1.3 
23% 30% 17% 20% Min (1.0) 1.3 1.2 
25% 47% 18% 15% Name (0.5) 1.9 0.8 
5% 6% 4% 3% Name (0.7) 1.2 0.7 

b) Coverage statistics  

 
Interestingly, for the name matchers the coverage of the BF ontology decreased, pre-
sumably because the BF ontology growed much faster than the MF ontology so that 
for many new BF names there no MF counterpart is found.  

The two instance-based matchers obtain a relatively high number of correspon-
dences (compared to the name matchers) as well as a large increase between the two 
versions (growth factor 2.4 – 3.2), i.e., the mappings grow faster than the ontologies. 
The Base(5) matcher is more stable than the Min(1.0) matcher since the delete frac-
tion is merely 29% vs. 52%. On the other hand the Min matcher achieves a much 
better coverage. 

5   Related Work 

The evolution and change management of ontologies has so far primarily been ad-
dressed in the context of the Semantic Web [18], especially for specific ontology 
representations such as OWL or Frame Logic. Klein [8,9] investigated the versioning 
of ontologies, [10] defined change operations to describe the evolution between on-
tology versions. In [13,14,15], the process of ontology evolution has been formalized 
and strategies to unambiguously handle critical changes during evolution are pro-
posed. Tools supporting change management of different ontology models are de-
scribed in [4,11,13].  

This line of previous work is complementary to ours and does neither consider life 
science ontologies nor a quantitative analysis of the evolution behavior. Furthermore, 
the evolution of ontology-related mappings has not been analyzed before. One recent 
paper analyzed the evolution of the Gene Ontology [17] using a simple evolution 
model. We also used some of their measures (e.g., number of paths or path lengths of 
concept nodes) but propose a more powerful generic evolution model that is applica-
ble to the evolution of ontologies, instance sources, and mappings. Furthermore, we 
comparatively analyzed not only the Gene Ontology but 16 biomedical ontologies as 
well as the evolution of annotation and ontology mappings.  
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6   Conclusions 

We proposed a general framework for analyzing the evolution of ontologies and on-
tology-related mappings. Using the framework we analyzed the recent evolution of 16 
life-science ontologies since 2004. We observed that most ontologies are heavily 
updated and grow significantly. Most changes are additions of new concepts but there 
is also a surprisingly high number of concepts that are deleted in newer versions or 
marked as obsolete. The notion of obsolete concepts is supported by most but not all 
ontologies. This notion is helpful for the stability of ontologies and eases applications 
the migration to newer ontology versions (without risking invalid references to de-
leted concepts). The analyzed ontologies are dominated by is-a relationships (>85% 
of all relationships), although the shares of part-of and domain-specific relationships 
have slightly increased in recent years. Furthermore, the inner structure of ontologies 
(share of inner concepts, number of paths, path lengths) increased in the recent past 
indicating a growth of structured knowledge in life science ontologies. 

We further utilized the framework to study the evolution of protein instances, an-
notation mappings and ontology mappings. Using Ensembl, we observed a large in-
crease in the number of protein annotations to the Gene Ontology (GO). However, the 
relatively high number of deletes of protein instances caused a rather high instability 
for the annotation mappings. For the evolution of ontology mappings, we considered 
several instance- and metadata-based match algorithms to automatically generate 
correspondences between concepts of two GO subontologies. We observed that the 
ontology mappings evolved to a larger degree than the ontologies especially for the 
instance-based methods. Metadata-based methods (e.g., based on concept names) can 
easily introduce wrong correspondences but may provide improved stability for evo-
lution. This is because they are not dependent on instances and their annotations and 
thus do not suffer from the higher fluctuation (delete activity) for instances compared 
to ontologies.  

We see several opportunities for future work. First, our analysis framework can be 
extended by additional types of change (e.g., modification of attribute values) and 
applied to further ontologies. Second, algorithms to generate annotation and ontology 
mappings can be extended or refined to improve their stability w.r.t. ontology evolu-
tion, e.g., by taking obsolete concepts and versioning explicitly into account. Third, 
tools can be developed to help ontology designers to explore the effects of certain 
ontology changes on existing annotation and ontology mappings, especially for delete 
operations. 

Acknowledgements. This work is supported by BMBF grant 01AK803E "MediGRID - 
Networked Computing Resources For Biomedical Research". 
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Abstract. The fundamental issue of knowledge sharing in the web is the ability 
to share the ontological constrains associated with the Uniform Resource 
Identifiers (URI). To maximize the expressiveness and robustness of an 
ontological system in the web, each ontology should be ideally designed for a 
confined conceptual domain and deployed with minimal dependencies upon 
others. Through a retrospective analysis of the existing design of BioPAX 
ontologies, we illustrate the often encountered problems in ontology design and 
deployment. In this paper, we identify three design principles – minimal 
ontological commitment, granularity separation, and orthogonal domain – and 
two deployment techniques – intensionally normalized form (INF) and 
extensionally normalized form (ENF) – as the potential remedies for these 
problems.  

Keywords: Semantic Web, Resource Description Framework (RDF), Ontology 
Web Language (OWL), Ontology, Uniform Resource Identifier (URI), BioPAX. 

1   Introduction 

As the word ontology is variously used, we should define our use first.  Ontology is 
here defined to be the RDF graph retrieved from the Uniform Resource Identifier 
(URI) of an ontological term.  Although the definition may seem overly restrictive, 
for it has limited both the ontology’s formalism (to RDF) and its application (to the 
web), it is necessary to establish the context of this discussion: of all techniques 
related to ontology development, what is described in this article is applicable mostly, 
if not exclusively, to the ontologies deployed in the web.  

As an RDF graph can be decomposed into a set of RDF triples (subject property 
object), an ontology is syntactically equivalent to a set of formal assertions, possibly 
made in a logic language, such as Ontology Web Language (OWL), and intended for 
modeling a particular aspect of reality. Common logics, however, concerns only the 
validity of inference among set of symbols but not the validity of what symbols 
represent. A logic language is, therefore, semantically neutral with regard to the 
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knowledge of its modeled domain. To make itself useful in practice, each ontology 
must therefore commit its vocabularies to certain reality [1]. Take the following RDF 
statement as an example (See section 2 for the syntactical convention):  

_:x biopax-1:NAME ‘Myoglobin’.  

In the absence of the ontological commitment of biopax-1:NAME, the above 
statement can be used by a logic language to model any relations between _:x and 
“Myoglobin”, among which the full name, short name, synonym, or primary identifier 
of an external database, etc., are all valid choices.  But with biopax-1:NAME being 
committed to “the preferred full name” as defined in its URI, the above statement 
should allude only to _:x’s naming relation to “Myoglobin”.  

Every ontological term, therefore, inherently carries two kinds of meanings (Fig. 1). 
The first kind is extensional.  In logic and philosophy, an extensional definition 
formulates its meaning by specifying its extension, that is, every object that falls under 
the definition of the term. In the web, the extensional meaning of a URI is carried by 
the URI itself because the meaning is implied in the term’s referred extensional entity. 
The extensional meaning of biopax-1:NAME, 
for instance, is simply the abstract concept of 
“full name”. The second kind of meaning of 
an ontological term is intensional. Intensional 
meaning is commonly expressed as a logic 
theory, i.e., a set of necessary and sufficient 
conditions, for the term to be satisfied. In the 
case of biopax-1:NAME, for example, its 
intensional meaning is the being of an 
owl:DatatypeProperty that can be used to 
associate a string-type data with one of the 
following entities: entity, biosource, and 
datasource. Using biopax-1:NAME to associate a biopax:entity with an integer value, 
for instance, would violate the intensional meaning of the biopax-1:NAME.  
Collectively, the extensional and intentional meanings of an ontological term build the 
term’s conceptualization about an external reality [2]. 

Traditionally, an ontology is developed for the sharing of its intensional meanings; 
less care is taken to ensure the sharing of its extensional ones. This is understandable 
because, until the development of the web, the identity scope of ontological terms is 
typically restricted to individual files. When various conceptualizations are used 
across multiple ontologies, individual names must be either manually aligned or resort 
to external tool support like Ontolingua [3, 4]. The use of URI in the semantic web, 
however, should change this practice. Within an RDF document, the distinction 
between local and foreign identifiers becomes inconsequential. Hence, ontologies 
deployed in the web should be developed in a fashion that can ensure the maximal 
sharing of not only its intensional meanings but also its extensional ones. The 
importance of sharing the latter must not be taken lightly. Because rarely will an 
extensional entity need – let along it hardly can – be completely identified by a set of 
logic constraints, every extensional entity is likely to be explained by various logical  
 

Fig. 1. The meaning of a URI 
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theories. Sharing ontology’s extensional meanings, viz. URIs, enables those consistent 
theories to be freely combined in an engineered system. In addition, it allows those 
inconsistent theories to still coexist and to be communicated at human level.  Hence, 
when an ontology is treated as a shared engineered artifact [4], sharing URIs helps to 
lower the cost of system integration; when it is used as a social agreement [5], it helps 
to retain the ontological commitment of a term as different theories about the term 
continue to evolve. 

The purpose of this article, therefore, is to introduce a few design principles and 
engineering techniques that can be used in practice to improve the sharing and reuse 
of ontological URIs. To illustrate the benefit of these techniques, we used the 
ontologies developed at BioPAX (http://www.biopax.org) as our use cases. The 
reason that BioPAX ontologies are chosen is two-fold. First, BioPAX ontologies exist 
at three different levels, providing us a retrospective frame on the problem. A detailed 
analysis of these three BioPAX ontologies will allow us to glimpse at the complexity 
of ontology development, which, in turn, will help us devise appropriate strategies  
to cope with them. Second, as the collaborative effort of numerous researchers from  
a number of institutes, the conceptualizations established in the BioPAX ontologies 
have become a valuable asset to the community.  Hence, by analyzing the existing 
problems and finding solutions to avoid them in the future, we can further expand the 
applicability of this already valuable knowledge. A point that we want to stress  
here is that: it is easy – and understandably so – for people to take the provided 
problem analysis as a way to dismiss BioPAX ontologies.  Thinking so, however, 
would misunderstand our intentions, which are to introduce ontology design 
principles and deployment techniques. We could easily build a set of trivial and 
imaginary ontologies to discuss the problem, but doing so would lessen the 
importance and urgency of these issues. Analyzing BioPAX, therefore, is aimed at 
offering constructive advices, as opposed to destructive criticisms, to the ongoing 
BioPAX development so that the resulting products could be more easily, efficiently, 
and broadly shared in the web. 

2   Materials and Conventions 

The three BioPAX ontologies used in this article are: Level-1 version 1.4, Level-2 
version 1.0, and Level-3 version 0.9. Because of the different namespaces of the three 
levels of BioPAX ontologies, conceptualizations are compared in reference to the 
simple names of each URIs. In other words, if two BioPAX URIs have the same 
simple name, they will be assumed to denote the same extensional entity.   

Qualified names as defined in [6] are used to shorten the URI notation. The URIs 
of all namespace prefixes used in this article except “biopax” are listed in Table 1.  
The prefix biopax is used to refer to a BioPAX concept in a general sense.  It is worth 
noting that the namespace URI of the level-3 BioPAX ontology listed in Table 1 is 
not the official URI. Level-3 ontology was released informally through the BioPAX 
discussion mailing list. As the mailing list requires a registered account to access, we 
provided a copy at our own domain for the reader’s convenience.    
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Table 1. Namespace Prefixes 

Prefix URI 
biopax-1 http://www.biopax.org/release/biopax-level1.owl# 
biopax-2 http://www.biopax.org/release/biopax-level2.owl# 
biopax-3 http://dfdf.inesc-id.pt/ont/biopax-3# 
owl http://www.w3.org/2002/07/owl# 
dc http://purl.org/dc/elements/1.1/ 
o3 http://dfdf.inesc-id.pt/ont/o3# 
[other] http://dfdf.inesc-id.pt/ex/biopax/[other]# 

 
All sample RDF statements will be written according to the syntax of Notation-3[7] 

with the namespace prefixes defined in Table 1. All RDF diagrams, such as Fig. 2, 3, 
and 5, are drawn with the graphical notation syntax of DLG2 as defined in [8] as well 
as one of its extension defined in [9].  

3   Analysis of BioPAX Ontology 

BioPAX ontologies gradually evolved over time.  Level-1 ontology defined the usage 
of 76 terms, with additional 34 and 54 introduced at level-2 and 3, respectively.  Each 
of the three ontologies, however, is governed by a unique namespace, making the data 
instances described at one level of ontology unable to interoperate with those at 
another.  To make the problem easily understandable and presentable, let’s take 
biopax:NAME as an example.  Consider the following two statements.  

_:x biopax-1:NAME ‘Myoglobin’. 
_:x biopax-2:NAME ‘Myoglobin’.  

From a machine’s standpoint, the above two statements, in fact, entail two entirely 
different theories about the resource “_:x”. To promote interoperability, a newly 
developed ontology, such as BioPAX level-2/3, should in principle reuse as much the 
conceptualizations defined in the existing ones, such as BioPAX level-1, as possible.  
Obviously, the problem can always be solved with a post-integration approach. For 
instance, the two versions of biopax:NAME can be easily aligned using the following 
assertion. 

biopax-1:NAME owl:sameAs biopax-2:NAME. 

This integration approach, however, suffers from two drawbacks.  First, it is 
potentially expensive because, for every k URIs of the same conceptualization, k(k-
1)/2 statements must be made.  As careful ontology engineering can easily avoid the 
problem, the integration approach should be taken as the last resort to integrate legacy 
semantic objects, such as those deployed in relational databases[10].  Second, the 
integration approach may not be possible when two conceptualizations logically 
contradict each other (see section 3.1.2).   

The seemingly trivial problem encountered by the NAME conceptualization, in 
fact, elucidates a fundamental issue with regard to the knowledge engineering in the  
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web. That is: how can the URI of an ontological term be maximally shared within the 
web? As ontological URIs denote conceptualizations, which can only be shared if 
they are logically consistent with each other, we should first investigate ontology’s 
compatibility issues before evaluating the sharing capability of BioPAX ontologies.  
Strictly speaking, “consistency” should be used in place of “compatibility” to describe 
ontology’s sharing capability. However, as OWL has defined two properties – 
owl:incompatibleWith and owl:backwardCompatibleWith – to describe ontologies’ 
inter-relationship, it is in the best interest of the web community as a whole for us to 
align our terminologies with OWL.  

3.1   Ontology Compatibility 

Traditionally in computer science, product compatibility is defined with regard to 
their functional interface. A new version of software, for instance, is considered 
backward compatible if it can take the place of an older one in terms of fulfilling the 
existing functionalities. Ontology development is, however, different: it concerns data 
rather than functionalities; and it aims at sharing and reuse rather than replace.  A new 
ontology is backward compatible if all data instances described in the new ontology 
are also valid data instances of existing ones. 

Between ontology’s two kinds of meanings, the extensional meanings should not 
incur much, if any, ontology’s incompatibility. Extensional meaning is consumed by 
humans and their compatibilities are maintained through social agreement, which 
should in principle be very stable.  The cause of ontology’s incompatibility, therefore, 
should mainly come from the specification of its intensional meanings. As the 
intensional meanings of ontological terms are typically defined in logic languages, 
one ontological term is compatible with the other only if they are logically consistent.  
In the subsequent sections, we used a few examples from BioPAX ontologies to 
discuss the issue.  

3.1.1   Compatible Use Case 
Consider the definitions of 
conversion class in BioPAX 
ontologies. At level-1, con-
version subclasses directly 
from interaction (Fig. 2a). 
But, at level-2, it does so 
indirectly from physiccalIn-
teraction – a class that  
was newly introduced into 
BioPAX at level-2 (See  
Fig. 2b). Because all instances 
of biopax-2:conversion would 
be valid instances of biopax-
1:conversion, the level-2’s 
definition of conversion is 
compatible with that of the 
level-1. 

Fig. 2. BioPAX’s conversion class. (a) Level-1 definition 
(b) Level-2 definition (c) Level-3 definition. 
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The converse, however, is not true 
because a biopax-1:conversion is not 
necessarily a physical-Interaction, 
and therefore, a biopax-2:conversion. 
By the same reasoning, the 
conversion defined at level-3 (Fig. 2c) 
is not compatible with either biopax-
1:conversion or biopax-2:conversion. 
The removal of the property 
constrains on SPONTANEOUS and 
PARTICIPANTS makes biopax-
3:conversion a more subsuming class 
than its counterparts in level-1/2. For 
example, a conversion instance with two SPONTANEOUS properties would be a 
valid conversion at level-3 but an invalid one at level-1/2. 

Strictly speaking, an ontology term is either compatible with another one or it is 
not.  But as the purpose of this article is to gain an insight into ontology development 
through the analysis of BioPAX ontologies, we designated the case similar to biopax-
3:conversion as a reverse compatible case, in the sense that the compatibility is 
achieved in a reversed direction with reference to the progression of ontology 
development.  The word “incompatibility”, therefore, is reserved for those ontological 
terms whose conceptualizations are not compatible in either direction. 

3.1.2   Incompatible Use Case 
The conceptualization of CONTROLLER property is a typical incompatible use case.  
At all three levels of BioPAX ontologies, CONTROLLER’s domain is defined to be 
control, but its range was changed at level-3 from physicalEntityParticipant to 
physicalEntity (Fig. 3).  Because the latter two classes are respectively extended from 
two disjoint classes – utilityClass and entity, biopax-3:CONTROLLER is incompatible 
with either biopax-1 or biopax-2:CONTROLLER. 

It is worth noting that the concept of physicalEntityParticipant is left undefined at 
level-3. Owing to the informal status of the level-3 ontology that was used in this 
analysis, we are unsure whether the change is made by intention or by accident. In 
either case, nevertheless, the rationale behind the use case is valid because, in science, 
incompatible or contradicting theories about the same reality often coexist or emerge 
over time. 

A milder case of incompatibility can be seen from the definition of FEATURE-
TYPE property. At level-2, the property’s domain is set to be sequenceFeature, but at 
level-3 it is changed to be entityFeature.  Both sequenceFeature and entityFeature 
subclass from utilityClass, but their inter-relationship has yet to be defined in 
BioPAX. Logically, the two versions of FEATURE-TYPE are not inconsistent, but 
conceptually they reflect two different modeling approaches to the same entity.  
Sharing biopax-2:FEATURE-TYPE with biopax-3: FEATURE-TYPE will not improve 
data’s interoperability because the same set of data instances would be interpreted by 
two completely different set of modeling primitives. In this article, this kind of 
definition was treated as an incompatible case because neither definition subsumes the 
other.   

Fig. 3. CONTROLLER definitions in BioPAX 
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For the same reason, changing the property type from owl:DatatypeProperty to 
owl:ObjectProperty or vice versa is also considered an incompatible change, albeit its 
only consequence is the increase of inference complexity. A case in point is 
biopax:KEQ, which is an owl:DatatypeProperty at level-1 but an owl:ObjectProperty 
at level-2/3. 

3.2   Compatibility of BioPAX Ontologies 

Using the above defined criteria, we analyzed the inter-compatibility of ontological 
terms among three levels of BioPAX ontologies.  The result is shown in Fig. 4. A 
detailed term-by-term analysis is provided at [11].  

To simplify the analyzing process, two contributing factors – disjoint statement and 
term dependency – were disregarded because a full account of these factors would 
significantly increase the workload of the analysis without necessarily changing the 
delivered message. 

The disjoint statement 
was disregarded due to 
its abundant use in 
BioPAX ontologies. A 
simple count of level-3 
ontology, for example, 
revealed a total of 357 
owl:disjointWith state-
ments. Such abundance, 
together with the varying 
class hierarchy at diff-
erent levels of BioPAX 
ontology, made the 
analysis of owl:dis-joint 
statements quite a time 
consuming process. To 
reduce the workload, all 
disjoint statements were 
therefore excluded from 
the evaluation. Neverthe-
less, changing owl:dis-
jointWith statement will have an effect on a term’s compatibility. Adding a disjoint 
statement will make a class more logically restrictive, and removing one will make it 
more logically general, than its original form. A case in point is the biopax-3:pathway, 
which has an extra disjointed class – referenceEntity – compared with its counterparts at 
level-1/2.    

The term’s inter-dependency was disregarded owing to the difficulties of 
evaluation. Take the modulation class as an example. At all three levels of BioPAX 
ontologies, modulation is defined to be a subclass of control with no more than one 
CONTROLLER, and with all CONTROLLED property coming from catalysis. But as  
 

Fig. 4. Compatibility Analysis of BioPAX Ontologies. The 
compatibilities of the same term among three levels of 
ontologies are vertically aligned. The few example cases 
discussed in the text are illustrated. The numerical value inside 
each box shows the number of BioPAX terms with the similar 
compatibilities, which type is indicated by the boxes’ filled 
pattern. 
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the CONTROLLER’s definition at level-3 logically contradicts those at level-1/2 (see  
last section), the modulation’s dependency on the CONTROLLER property would 
make their definitions contradicting as well.  In a logic system, a single contradiction 
would invalidate the entire theory. Even if we do not take this position during the 
evaluation, the interdependency of ontological terms will eventually lead us to the 
same conclusion. As seen in Fig. 3, the CONTROLLER’s definition is ultimately 
related to entity and utilityClass – the very two top classes of BioPAX ontologies.  
Counting dependencies of BioPAX term will make entity and utilityClass, and 
therefore the entire ontology, a contradiction. In short, taking the full account of term 
dependency would prevent us from making a more detailed and meaningful analysis. 
In the provided analysis, the compatibility was therefore evaluated solely based on 
their syntactic definitions; all dependency incurred changes were disregarded.  

4   Methods to Improve Ontology’s Sharing 

The current practice of BioPAX ontology development is not optimal in terms of 
sharing and reusing existing conceptualizations. First, at each level of BioPAX 
ontologies, the same concept is renamed under a different namespace, making the 
sharing of their extensional meaning difficult. Second, the ontologies are presented in 
a monolithic fashion, making the sharing of their intensional meaning difficult as 
well.   

Ideally, an ontology should be developed in an incremental fashion.  Useful and 
relevant conceptualizations developed previously should be imported into the new 
ontology, where they can be logically refined with newly introduced conceptualiza-
tions. Take the conceptualization of pathway and modulation as an example.  Their 
definitions (sans disjoint statements) remain unchanged throughout all three levels of 
BioPAX ontologies. In principle, both pathway and modulation need only to be 
defined once, e.g., at level-1, and then reused, e.g., at level-2/3, via a simple 
owl:imports statement. The same importing approach can also be applied to the 
compatible terms, such as conversion, whose level-1 definition can be imported into 
level-2, where additional subclass statements can be made to realign the class 
hierarchy in reference to the newly introduced class – physicalInteraction.  Such an 
incremental approach allows both the URI and the logic definitions of a 
conceptualization to be shared.  Interoperability will be improved as data instances 
developed against the same ontology can be unambiguously understood on the same 
ground without additional engineering effort.  Furthermore, it would also reduce the 
cost of ontology development and maintenance because the same statements no 
longer need to be redundantly defined. 

However, if ontologies are developed in a monolithic fashion, the incremental 
approach is unlikely to take place. Consider the development of BioPAX ontologies.  
Conceptualizations that would undergo different compatibility changes are physically 
bound in a single document (Fig. 4). The conceptualization of modulation, pathway, 
and conversion etc., for instance, were bundled up with that of NAME and  
 



36 X. Wang, J.S. Almeida, and A.L. Oliveira 

CONTROLLER. Because, unlike conversion, which underwent a compatible change 
at level-2, the biopax:NAME made a reverse compatible change at level-2, suggesting 
that, if the conceptualization is to be shared, the import must be made from level-2 to 
level-1, but not vice versa. The CONTROLLER, on the other hand, underwent an 
incompatible change at level-3, suggesting that neither definition can be imported into 
the other.  

Since RDF does not yet support ontology modulization techniques, such as named 
graph [12] or C-OWL [13], statements in an RDF document cannot be selectively 
imported into another. To improve the sharing and reuse of existing conceptualiza-
tions, ontologies must, therefore, be carefully designed and deployed. First, large, 
monolithic ontologies should be broken up into sets of small and modular ones. 
Second, ontology’s inter-dependency must be carefully structured in a manner that it 
avoids tight coupling.  In the subsequent sections, we will introduce a few design 
principles and engineering techniques that may help in this regard.   

4.1   Ontology Design Principles 

4.1.1   Minimal Ontological Commitment 
The principle of minimal ontological commitment (PMOC) was proposed by Gruber 
[14].  Here we quote, 

An ontology should make as few claims as possible about the world being modeled, 
allowing the parties committed to the ontology freedom to specialize and instantiate 
the ontology as needed. Since ontological commitment is based on consistent use of 
vocabulary, ontological commitment can be minimized by specifying the weakest 
theory (allowing the most models) and defining only those terms that are essential to 
the communication of knowledge consistent with that theory. 

Gruber proposed PMOC along with five other sound ontology design principles in 
the same article. Only PMOC is chosen here because it is the most pertinent to the 
ontology’s sharing and reuse. Principles of similar essence have in fact been echoed 
in other research areas. For instance, the principle of least effort has been used to 
theorize the user behavior during information search, and the rule of least power has 
been proposed by W3C as the guidance for language design [15]. 

A case in point is BioPAX’s definition of NAME.  At level-1, the domain of NAME 
is defined to be the union of entity, bioSource, and dataSource. At level-2, a new class 
– sequenceFeature – is added to the domain, making biopax-2:NAME a reverse 
compatible definition of biopax-1:NAME.  At level-3, however, the NAME’s domain 
is redefined to be the union of bioSource, pathway, physicalEntity, and 
referenceEntity, making it incompatible with either level-1 or 2’s definition.  
However, as things that can have a full name – the NAME’s extensional meaning – 
are not restricted to those entities defined in BioPAX, the conceptualizations of 
NAME have apparently over-committed its intended use.  To follow the advice of 
PMOC, the domain of NAME should not be constrained at all.  At most, if so desired, 
it can be constrained to the union of entity and utilityClass – the two top classes of 
BioPAX ontologies.  Such a design would stabilize the NAME’s conceptualization, 
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which, in turn, would allow the definition be easily shared by all three levels of 
BioPAX ontologies.  

4.1.2   Granularity Separation 
The PMOC, however, should not be taken in a rigid and extreme sense because, 
otherwise, there should be only top ontologies like Suggested Upper Merged 
Ontology (SUMO) [16] but nothing else. Most ontologies are developed to carry a 
specific application task, which should be used as the context for PMOC to be 
meaningfully applied.  Take the conceptualizations of conversion as an example (See 
Fig. 2). Although only the level-3’s definition satisfies PMOC, it is hard to fault the 
design of level-1 and 2’s because the coarse semantic granularity of level-3’s 
definition may not suit the need of the targeted application.       

There is in general a tradeoff between an ontology’s expressiveness and its 
shareability. A coarse grained ontology carrying only a few logical constraints is 
easier to be shared but less powerful to constrain an application’s behavior. A fine 
grained ontology bearing a rich set of axioms, on the other hand, is more logically 
clear in directing specific application behaviors but less convenient and more 
expensive to be integrated. 

Obviously, there should be all kinds of ontologies conceptualized at every grain of 
granularity. But the point that we want to stress here is: ontologies of different 
semantic granularities should be separately developed and deployed.  This is, as we 
shall name it, the principle of granularity separation (PGS).  For instance, had the 
development of level-1 BioPAX followed the PGS, the general form of conversion 
definition as that of level-3 would have been separately developed at level-1, 
preventing it from confounding the sharing of other conceptualizations at level-3. 

The PGS further implies that a fine grained ontology should be developed within 
the framework of a coarse grained top ontology. Starting from a top ontology is, in 
fact, almost always a good strategy [2, 17]. A top ontology usually carries less 
logical constraints; its conceptualizations are more general and stable, which make 
them easier to be shared as consensus among large communities of users.  
Furthermore, a top ontology usually contains the general structural information, 
which can help users to systematically identify and partition the targeted knowledge 
domain, against which detailed application ontologies can be developed and 
integrated.   

4.1.3   Orthogonal Domain 
Though not explicitly defined in the ontology field, orthogonal separation has been a 
well received concept in computer science. In both software [18] and database design 
[19], orthogonality principle has been used as a key guideline to improve system’s 
expressive power and reusability. The very first architecture principle of the Web is, 
in fact, the principle of orthogonal specifications because it helps to increase the 
flexibility and robustness of the Web [20]. Here we propose the principle of 
orthogonal domain (POD) with regard to ontology development. 

Semantically orthogonal conceptualizations should be defined in separate 
ontologies. 
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Consider, for example, the relationship between entity and name. A biological 
pathway entity is a biopax:entity regardless if it has a name or not. Conversely, 
whether an entity has a name or not bears no relations to its nature as a biopax:entity 
or not.  Of course, developing the conceptualization of NAME in BioPAX can hardly 
be blamed because to label a biopax:entity does require a naming concept.  But, 
deploying the conceptualizations of NAME and entity in the same ontology should be 
criticized because it hinders, if not prohibits, alternative conceptualizations from 
being applied.  For instance, the conceptualization of NAME is, in fact, identical to 
that of dc:title defined in the Dublin Core Metadata Initiative (DCMI) [21]. As the 
latter is a more thoroughly developed and shared community standard, biopax:NAME 
should eventually be replaced by dc:title to improve the overall data interoperability 
of BioPAX data.  The physical binding of entity and NAME in the same document 
makes the replacement difficult to take place.   

To follow the POD, the conceptualizations of entity and NAME should be 
separately specified in two different ontologies. There are two benefits of such a 
separation.  First, separation reduces the sharing cost of each term, which in turn 
increases their shareabilities. In its current deployment form, for instance, 
biopax:NAME is unlikely to be used by someone, say a physicist, who has no interest 
in biology – not just because the NAME’s domain is so restricted, but more so because 
importing the NAME’s conceptualization would also import a few hundreds of 
assertions that are completely irrelevant to the physicist’s tasks.  Between increasing 
data interoperability and reducing computation cost, the physicist may be forced to 
choose the latter because a few importing of concepts similarly deployed as 
biopax:NAME would easily render his application into an unmanageable state.  But if 
the conceptualization of NAME is separately deployed, the physicist would be more 
willingly to use it because doing so not only improves his data’s interoperability but 
also reduces his development and maintenance cost.  

Second, domain separation allows different conceptualizations to evolve 
independently without interfering with each other. In the field of knowledge 
engineering, there is an often encountered problem – the interaction problem, where 
“representing knowledge for the purpose of solving some problem is strongly affected 
by the nature of the problem and the inference strategy to be applied to the problem 
[22]”. During the design of Chemical Markup Language (CML) [23], for instance, its 
designers have found “that many components with a ‘chemical content’ did not 
require chemical concepts for their implementation” [24]. Since one cannot, 
especially at the beginning of the Semantic Web, expect the presence of all kinds of 
ontologies available to his use, one must develop ontologies in both his familiar and 
his unfamiliar areas. Domain separation allows domain experts to divide their labors 
according to their area of expertise.  A full scaled ontology can be developed in their 
familiar domains and makeshift solutions can be used to handle the areas that are out 
of their elements. More importantly, all these can be done without worrying that the 
latter’s informality and less popularity may prevent the sharing and reuse of the 
former. In the next section, we introduce how such separation should be engineered in 
the semantic web. 
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4.2   Ontology Engineering 

As conceptualizations are 
encoded and delivered in engineer 
artifacts, conceptual separations 
can only be realized if ontologies 
are engineered to be physically 
independent from each other. 
Consider the deployment of entity 
and NAME shown in Fig. 5a.  
At first glance, the two 
conceptuali-zations appeared to 
be separated because they are 
specified under two different 
namespaces “http://dfdf.inesc-
id.pt/ex/biopax/a” and “http:// 
dfdf.inesc-id.pt/ex/biopax/n”, re-
spec-tively. But a careful look 
will reveal that the separation is 
only half complete because 
a:entity is still tightly coupled 
with n:NAME, albeit not vice 
versa. A complete separation of 
the two conceptualizations 
should be deployed as shown in 
Fig. 5b, where entity and NAME are respectively specified at ontology “http:// 
dfdf.inesc-id.pt/ex/biopax/b” and “http://dfdf.inesc-id.pt/ex/biopax/n”. The two in-
dependent conceptualizations are collectively used at ontology “http://dfdf.inesc-
id.pt/ex/biopax/b1”. 

The advantage of a complete separation is that concepts defined in one ontology 
can be used independently of those in the other. This independence firstly reduces the 
sharing cost and, therefore, increases shareability. Secondly, it allows existing 
conceptualization to gracefully evolve over time without tampering the compatibility 
of the others. For instance, the entity’s conceptualizations in both “http://dfdf.inesc-
id.pt/ex/biopax/b1” and “http://dfdf.inesc-id.pt/ex/biopax/b2” evolve from b:entity.  
But in ontology b2, dc:title is used in place of the n:NAME in ‘b1’. Owing to the 
complete independence between ontologies b and n, b2 can coexist with b1 so that the 
migration from one to another can be carried out gracefully.  If, on the other hand, the 
entity is deployed as shown in Fig. 5a, the independent evolution of entity becomes 
impossible.  

4.2.1   Ontology Classification 
To facilitate the discussion on ontology’s engineering issue, we defined an Ontology 
of ontologies (O3) [25] that classifies ontologies along few semantic dimensions.  
First, in O3, we made a distinction between ontologies that define a logic language, 
such as RDFS and OWL etc., from the rest, such as BioPAX and DCMI [21]. The  
 

Fig. 5. Ontology Deployment Strategy. (a) and (b) 
shows two different deployment strategies. The 
dotted shapes show the potential changes in the 
future. 



40 X. Wang, J.S. Almeida, and A.L. Oliveira 

former is defined as instance of o3:Logic 
and the latter of o3:DomainOntology.  
Second, we classified ontologies by their 
physical dependencies. If an ontology’s 
conceptualizations are independent of the 
others, i.e., if the ontology does not 
import another o3:DomainOntology, it is 
defined to be an o3:Local. Otherwise, it is 
an o3:Complex. Third, we categorize 
ontologies according to the kinds of meanings that they carry. An ontology carrying 
only the extensional meanings of its terms is an o3:Vocabulary; one carrying only the 
intensional meanings is an o3:Theory; otherwise, it is an o3:ConcreteOntology.  
Different combinations of these basic ontology classes can lead to the definitions of 
o3:LocalOntology, o3:ComplexOntology, etc. An important class worthy of special 
mention is o3:Profile.  An o3:Profile is an o3:ComplexTheory with characteristic 
RDF statements: all o3:Profile’s statements are made of concepts initially deployed 
elsewhere, meaning that the sole functionality of an o3:Profile is to make joint use of 
independent conceptualizations. Fig. 6 is a Venn diagram of the relationships among 
several ontology classes relevant to this discussion.  More detailed information of 
those classes can be found at [25]. 

4.2.2   Normalized Ontological System 
With the conceptualizations established in O3, we can now define two ideal forms of 
ontology deployment.  

• Intensionally normalized form (INF): An ontological system is in intensionally 
normalized form if it consists of only o3:Local and o3:Profile. 

• Extensionally normalized form (ENF): An ontological system is in extensionally 
normalized form if it consists of only o3:Vocabulary and o3:Theory. 

INF and ENF are not mutually exclusive.  They can be conjunctively applied to an 
ontological system, resulting in a system that consists of only o3:Vocabulary, 
o3:LocalTheory, and o3:Profile. 

By the above definition, the system deployed in Fig. 5a is an anomaly with regard 
to INF because ontology a is an o3:Complex.  On the hand, the system deployed in 
Fig. 5b is in INF because ontologies b, n are o3:Local and b1, b2 are o3:Profile.  As 
we have discussed earlier, the advantage of an INF system is that ontologies’ inter-
dependency is carefully managed so that each ontology has the most shareability. 

But deploying ontologies in INF is still insufficient to maintain the URI’s stability 
under certain circumstances.  A case in point is the conceptualization of 
biopax:CONTROLLER (See Fig. 3), whose two conceptualizations, if shared, leads to 
a logical contradiction.  Thus, if the logical constraints of CONTROLLER are bound 
with the instantiation of its URI, two different URIs must be used to denote the two 
kinds of CONTROLLER.  However, the two types of CONTROLLER differ only in 
their intensional meanings; their extensional meanings are still the same, implying 
that their URIs do not have to be different.  To maintain the URI’s stability, 
CONTROLLER can be first developed in an o3:Vocabulary, where its extensional 
meanings are first to be specified.  This vocabulary URI can then be subsequently 

Fig. 6. Ontology classification 
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used in various o3:Theory to define its intensional meanings.  In the history of 
science, a fundamental change in our conceptualization about an external entity was 
rarely, if ever, accompanied by a change in the words that are used to refer to the 
entity.  For instance, Copernican revolution changed our conceptualization about the 
earth, but not the usage of the word “earth”.  The same principle, we think, should 
also be applied to ontological systems as well, and deploying ontologies in ENF will 
help in this regard.  An o3:Vocabulary only establishes the identities of resources in 
the web but does not make any logical assertions about them.  URIs defined in an 
o3:Vocabulary, therefore, can be shared in any logic theories, regardless if they 
contradict each other or not. 

5   Conclusion 

The web is an open, decentralized system, in which communication is carried out 
through sharing resources. Ontologies are no exception. They are web resources and 
they are to be shared. Good ontologies thus should be developed to have the maximal 
shareability. Of course, correct conceptualization requires an ontology’s shareability.  
But other factors would also contribute. The first one is the size of an ontology.  An 
ideal ontological system should not be comprised of a single, consistent, and 
comprehensive ontology. Putting aside the debate on whether such an ontology is 
attainable, we think that, even if it were, it may not be desirable.  The size of the 
knowledge base is always an important performance factor for an ontology driven 
application [26]. Using a few concepts from a galaxy-like ontology will not be a 
sensible approach under most circumstances.  Most domain applications would have a 
well defined local task that rarely demands concepts beyond their domain knowledge.  
For instance, a BioPAX-driven program is unlikely to be interested in whether a 
pathway or a conversion is aligned to the “Physical” or “Abstract” as defined in 
SUMO.  Forcing their alignment into a single ontology can only tax the program with 
unnecessary computation cost.  This is, however, not to say that SUMO, or any other 
top ontology of the similar nature, is not useful.  On the contrary, we believe that the 
opposite is true. A well defined top ontology always serves a valuable conceptual 
framework for guiding the design of domain ontologies.  But, conceptually alignment 
does not have to be always realized in physical implementation.  The broad spectrum 
of application needs demands that all kinds of ontologies be developed and be at 
every grain of semantic granularity. Moreover, each of them should exist 
independently, while readily to be assembled into a coherent system.  

The second contributing factor to an ontology’s shareability is its stability. As no 
useful engineered system can be developed to varying specifications and no 
agreement can be made to varying subjects, an ontology, once developed and 
deployed, must seldom, if ever, change. But things always change with time; 
ontologies are no exception. On one hand, scientific progress can change our 
conceptualizations about an extensional entity. On the other hand, technological 
advancement and social interaction can change the way that a particular problem is 
solved. The challenge, therefore, lies in how to find the balance between a system’s 
stability and its adaptability. As shown in this article, the monolithic approach taken 
by the BioPAX ontologies cannot meet the challenge.  In a monolithic system, change 
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must take place in an all-or-none fashion. Because all conceptualizations are 
physically bound together, a partial change must be made in the original ontology or a 
completely newly developed one. Both approaches have serious drawbacks. The 
former risks the danger of breaking an existing application that depends on the 
previous conceptualizations; the latter impedes data interoperability by using different 
set of URIs for the same conceptualization.  

"A new scientific truth”, as Max Planck has judiciously stated in [27], “does not 
triumph by convincing its opponents and making them see the light, but rather 
because its opponents eventually die, and a new generation grows up that is familiar 
with it." Although an ontological system engineers – as opposed to discover – 
scientific truth, its use and sharing in the semantic web should nevertheless follow the 
same principle.  A new ontology should not be put into use by replacing an older one.  
Rather, it should reuse or compete with the older one if reuse is not possible.  The 
ultimate winner is chosen by the users rather than by the designers of an ontology.  In 
this sense, the best ontologies can be defined to be the ontologies that are mostly 
shared, and the worst are those that are seldom linked.  There is perhaps no such thing 
as the ideal ontology but only the ideal ontological system that is capable of fostering 
an ideal one.  We hope that the few design principles and engineer techniques 
introduced in this article may offer help toward building such a system.  
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Abstract. There is significant knowledge captured through annotations
on the life sciences Web. In past research, we developed a methodology
of support and confidence metrics from association rule mining, to mine
the association bridge (of termlinks) between pairs of controlled vocab-
ulary (CV) terms across two ontologies. Our (naive) approach did not
exploit the following: implicit knowledge captured via the hierarchical
is-a structure of ontologies, and patterns of annotation in datasets that
may impact the distribution of parent/child or sibling CV terms. In this
research, we consider this knowledge. We aggregate termlinks over the
siblings of a parent CV term and use them as additional evidence to
boost support and confidence scores in the associations of the parent CV
term. A weight factor (α) reflects the contribution from the child CV
terms; its value can be varied to reflect a variance of confidence values
among the sibling CV terms of some parent CV term. We illustrate the
benefits of exploiting this knowledge through experimental evaluation.

Keywords: annotation, controlled vocabulary (CV) terms, generalized
association rule mining, support and confidence, life sciences link
(LSLink).

1 Introduction

The biomedical enterprise has generated an abundance of data that is captured
using annotated and hyperlinked records in the life sciences Web. Records in
each resource are typically annotated with terms from controlled vocabularies
(CVs) or ontologies, forming a rich Web of knowledge. Consider a simplified Web
of three publicly accessible resources Entrez Gene [1], OMIM [2] and PubMed
[3], in Figure 1. Data records in each resource are annotated with terms from
multiple CVs. The hyperlinks between data records in any two resources form a
relationship between the two resources, represented by a (virtual) link. Thus, a
record in OMIM, annotated with SNOMED terms [4] has multiple links to gene
records in Entrez Gene, annotated with GO terms [5]; gene records further have
hyperlinks to multiple records in PubMed annotated with MeSH terms [6].
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Fig. 1. Web of Entrez Gene, OMIM and PubMed Resources

Fig. 2. Example hyperlinks between Entrez Gene and PubMed

A background LSLink (Life Sciences Link) dataset composed of termlinks
(to be defined in Section 2.1) is generated after executing a protocol to follow
hyperlinks and to extract annotations; details are provided in [7]. Example hy-
perlinked records are shown in Figure 2. Each termlink associates a pair of CV
terms, and contributes to an association bridge (reflecting a connection of two
CV terms) across two CVs or ontologies. A user dataset is a subset of the back-
ground dataset. In prior research, we mined the association bridge of termlinks of
user datasets, to discover potentially new knowledge that is both meaningful and
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not well known a priori. Using support and confidence metrics, we can rank the
pairs of associations of CV terms and identify potentially significant pairs. User
validation confirmed that a majority of highly ranked pairs were meaningful.
Several pairs were unknown and might lead to actionable knowledge [7].

There are two limitations of our prior research. First, while mining the asso-
ciation bridge of termlinks between pairs of CV terms, we treated each CV term
(of the CV or ontology) independently. For example, is-a is a key relationship
that exists amongst terms of a single vocabulary. Intuitively, termlink evidence
existing for a child CV term could influence the confidence and support scores
of the parent CV term. By mining the termlinks of the child and parent CV
terms independently, we may be ignoring this potential contribution from the
structure of the ontologies.

The second limitation is that we did not consider any patterns of annota-
tion in a dataset of termlinks. Suppose we consider a user dataset of an OMIM
record conceptually linked to a set of Entrez Gene records. Such a set of gene
records have some biological affinity since they are all associated with the disease
in the OMIM record. Our analysis of such sets of gene records and the corre-
sponding datasets of termlinks indicates that patterns of annotation do exist.
One such pattern is an increase in the frequency of annotation using sibling CV
terms.

This research will exploit both sources of knowledge, i.e., the is-a structure of
ontologies and the pattern of annotations. We aggregate the termlinks associated
with a parent CV term, so as to use this evidence to potentially boost the values
for confidence and support scores in associations of the parent CV term. A weight
factor (α) determines the relative weight of evidence or the contribution from the
child CV terms. The value of α can also reflect a variance of confidence scores of
the sibling CV terms of some parent CV term, e.g., a high variance can reduce
the contribution from child terms.

Using a background dataset of OMIM, Entrez Gene and PubMed, and user
datasets that have observable patterns of annotation, we demonstrate the bene-
fits of our research. One interesting result is that we find potentially significant
associations involving parent GO terms, where this term does not occur among
the termlinks, i.e., it was not used for annotation or it was not explicitly linked
to the partner MeSH term. This suggests that our method can identify implicit
annotations and there is scope to generate new knowledge as we identify such
new associations.

The paper is organized as follows: Section 2 defines a background LSLink
dataset, termlinks and support and confidence. Section 3 motivates the po-
tential benefits of aggregation over CV terms. Section 4 presents a method-
ology for determining aggregate confidence and support scores. We discuss the
limitations of a simple solution (1-step link aggregation) and the features of
a more robust solution (2-step score-score aggregation). Section 5 presents the
related work and Section 6 illustrates evaluation results. Section 7 offers our
conclusions.
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2 Prior Results on LSLINK Association Mining

2.1 Support and Confidence for LSLINK Mining

A background LSLink dataset is associated with a specific experiment protocol
to gather a representative sample of data records, hyperlinks and annotations.
Figure 2 illustrates three sample hyperlinks between two Entrez Gene and two
PubMed records. The hyperlinks are between records e1 and p1, e2 and p1, and
e2 and p2. The terms ga, gb, gc and ma, mb, mc, md annotate these records. Each
record is associated with two terms. If we consider the hyperlink between e1 and
p1, the two CV terms ga and gb annotating e1, and the two CV terms ma and
mb annotating p1, then we can generate four termlinks. An example termlink
is the following: (ga, mc, e2, p2) = (DNA repair, Mitosis, 675, 10749118).
These three hyperlinks from Figure 2 generate twelve termlinks. Note that both
hyperlinked data records must be annotated in order to generate a termlink.

The set of termlinks represents a bridge of associations between pairs of CV
terms across two CVs or ontologies. We apply support and confidence metrics
from association rule mining [8,9] to identify significant pairs of associations
among CV terms. The metrics reflect the extent to which the association between
a pair of CV terms deviates from one resulting from chance alone (a random
association). Datasets and cardinalities are defined as follows:

– (G, M, E, P ) is the background dataset of genes from Entrez Gene (E) an-
notated with GO terms (G) with links to PubMed records (P ) that are
in turn annotated by MeSH terms (M). Termlinks are derived from this
dataset. #(G, M, E, P ) is the cardinality of the termlinks in (G, M, E, P ).
(G, M, E′, P ′) and #(G, M, E′, P ′) correspond to the user dataset, a subset
of the background dataset.

– #(gu ∧mw, E, P ) is the cardinality of termlinks containing the pair of terms
gu and mw in the background dataset. #(gu ∧mw, E′, P ′) is the correspond-
ing value in a user dataset.

– #(gu∨mw, E, P ) is the cardinality of termlinks containing either term gu or
term mw in the background dataset. #(gu∨mw, E′, P ′) is the corresponding
value in a user dataset.

Finally, we define support and confidence as follows:

Supp(gu, mw, E′, P ′) =
#(gu ∧ mw, E′, P ′)

#(G, M, E′, P ′)
(1a)

Conf(gu, mw, E′, P ′) =
#(gu ∧ mw, E′, P ′)
#(gu ∨ mw, E′, P ′)

(1b)

2.2 Results from Mining

There can be a potentially large number of associations of pairs of CV terms even
for a single gene. For example, for a user dataset defined for the human gene TP53
[7], there were 986,612 termlinks and they represented 83,116 distinct associa-
tions between pairs of GO and MeSH terms! The support and confidence metrics
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were used to rank these pairs of associations and identify the Top 25 potentially
significant pairs for each gene. Experts (medical doctors and cancer researchers)
rated the associations of pairs of CV terms along the following independent
dimensions: (Meaningful, Maybe Meaningful, Not Meaningful), and (Widely
Known, Somewhat Known, Unknown/Surprising). A majority of the Top 25 pairs
of associations for user datasets such as BREAST CANCER, CFTR, TP53, etc., were
identified as a true positive. Several of the pairs were unknown and might lead
to new knowledge. For example, for BREAST CANCER, the previously unknown as-
sociation of the GO term negative regulation of centriole replication
with the MeSH term Fallopian Tube Neoplasms might be interesting, because
it indicates that the tumor and the negative regulation might have a causal re-
lationship [10]. The background dataset of termlinks from this study and the
associations among pairs of GO and MeSH terms are available at the following
site: http://www.cbcb.umd.edu/research/lslink/lodgui/

3 Motivation for Aggregation

We first illustrate the potential benefit of exploiting structural knowledge of is-a
hierarchies and then discuss patterns of annotation.

The first set of examples are from termlinks generated from a user dataset of
the human gene TP53 in Entrez Gene, PubMed records that are hyperlinked to it,
and the corresponding annotations. Consider the GO and MeSH is-a hierarchies
of Figure 3. In Figure 3(a), a termlink (negative regulation of progression
through cell cycle, Cyclin-Dependent Kinases, 7157, 17612495) occurs
between the parent GO term and the parent MeSH term. In addition, two
termlinks (cell cycle arrest, CDC2-CDC28 Kinases, 7157, 14640983) and
(cell cycle arrest, Cyclin-Dependent Kinase 2, 7157, 17371838) occur
between the child terms. These latter two termlinks are evidence to boost the
association between the pair of parent terms.

In Figure 3(b), the termlink (protein binding, Tosylphenylalanyl
Chloromethyl Ketone, 7157, 12821135) occurs between the parent GO term
protein binding and a child MeSH term Tosylphenylalanyl Chloromethyl
Ketone. In addition, there are two termlinks from the parent MeSH term to
two child GO terms. Note that there is no termlink between the two par-
ent CV terms, protein binding and Amino Acid Chloromethyl Ketones in
the termlink dataset; this is represented by a broken link between the pair of
terms in the association bridge. However, the three termlinks in this Figure can
be considered evidence to introduce a new association between the parent GO
term protein binding and the parent MeSH term Amino Acid Chloromethyl
Ketones.

To summarize, Figure 3 presented two examples of termlinks associated with
combinations of parent/child CV terms. It seems intuitively apparent that the
termlink evidence attached for example to the child GO terms should influence
the evidence of the parent GO terms. By treating these termlinks as strictly
independent, we may be ignoring potentially valuable information offered by



Exploiting Ontology Structure and Patterns of Annotation 49

Fig. 3. Example parent-and-child hierarchies in GO and MeSH (each dotted line show
an actual association generated in the human gene TP53 user dataset)

the structure of the GO ontology. Note that this applies to each participating
ontology involved in generating termlink, in this case GO and MeSH. Thus,
analogously from the perspective of the MeSH hierarchy, parent MeSH terms
may benefit from the termlink evidence of their child MeSH terms. Finally, new
associations between pairs of parent CV terms may also be introduced, where
the parent CV term was not used for annotation.

Note that in the experiments reported in this paper, we only exploit a limited
amount of knowledge. For example, we limit aggregation of termlink evidence
along the GO is-a hierarchy alone, and we only consider aggregation from a
GO CV term to its immediate parent term. We plan to study multiple-level
aggregation along both the GO and MeSH hierarchies in future research.

Next, we illustrate a pattern of annotation that results in a higher frequency
of annotations that use sibling terms from the GO ontology. We note that there
is a similar pattern of higher frequency of annotation of parent and child terms,
and that these patterns are also observed in individual Entrez Gene record an-
notations. For lack of space, we do not provide evidence on all such patterns.

We consider a dataset of termlinks obtained from OMIM records conceptually
hyperlinked to (one or a set of) gene records in Entrez Gene. We note that
these gene records are biologically linked since they are associated with the
same disease in the OMIM record. As of September 6, 2007, there were 14,851
OMIM records. The distribution of Entrez Gene records conceptually linked to
an OMIM record is given in Figure 4. While 14,502 OMIM records are linked
to a single gene, 193 records have links to two genes, and SCHIZOPHRENIA (MIM
Number 181500) links to 22 genes.

To illustrate the annotation pattern, we compare two techniques to group
pairs of gene records to create user datasets. For the first method (OM linked),
we place a pair of genes in a user dataset only if both genes are conceptually
hyperlinked to the same OMIM record. Next, we generate a similar number
of pairs for Random; here we pick a pair of human genes at random from
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Fig. 4. Distribution of Entrez Gene records hyperlinked per OMIM record

Fig. 5. Distribution of number of sibling GO terms for 1,000 pairs of genes

Entrez Gene. For each pair in OM linked and Random, we extract the GO
annotations. Each dataset contains 1,000 pairs of genes. Figure 5 shows the
distribution of the number of sibling GO terms that annotate the pairs of genes
from OM linked and Random.

We observe that pairs of genes in OM linked have a much higher distribu-
tion of sibling GO terms. For example, there are 1,618 occurrences of (pairs of)
termlinks involving a pair of sibling GO terms, and 148 occurrences of (a triple
of) termlinks involving a triple of sibling GO terms, in OM linked. In contrast,
the 1,000 pairs of genes in Random only have 559 occurrences of pairs and 34
occurrences of triples of sibling GO terms. To validate the pattern of annotation,
we generated the 1,000 pairs of OM linked genes and the 1,000 pairs of Ran-
dom genes three times. The three OM linked datasets had a mean of 1,499
pairs of sibling GO terms and a mean of 196 triples of GO terms. The three
Random datasets had a mean of 487 pairs of sibling GO terms and a mean of
41 triples of GO terms. To summarize, user dataset such as OM linked with
pairs of genes with biological affinity reflect a pattern of annotation with a higher
frequency of annotation using sibling GO terms.
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4 Methodology for Aggregation

We consider boosting the support and confidence scores of associations of the
parent CV terms using the evidence of the termlinks of child CV terms. We
use the unboosted score for support or confidence in Equations 1a and 1b as a
baseline, SuppB or ConfB, respectively.

We propose two solutions for aggregation. The simple solution, 1-step Link
aggregation (1L), will aggregate the termlinks from the child to the parent and
use a counting approach. This approach has two limitations. One is that the
percentage contribution from the termlinks of the child CV term cannot be con-
trolled. The second is that a variance of confidence among the sibling terms of
the parent CV term cannot be factored in by the 1L simple counting approach.
We then present a comprehensive solution, 2-step Score-Score (2SS), that ob-
tains a weighted score for the parent CV term. The weighted score allows the
contribution from the child CV terms to be controlled. The value of the weight
α can reflect the variance of confidence of the sibling CV terms. For example, a
high variance can increase the contribution from the child terms.

4.1 Simple Solution for Aggregation (1L)

Consider the example in Figure 6(a) where g1 and g2 are two sibling child terms
of parent GO term gu. There are 2 termlinks, one from GO term gu, and another
one from g2, to the MeSH term mw. The confidence scores for the parent gu, or
for the child g2, paired with mw, are 1

4 and 1
3 , respectively.

The simple 1L counting based approach to boost the confidence score of the
parent CV term gu will accumulate all termlinks associated with g2 and credit
it to the parent term. The 1L expression for the boosted support and confidence
scores for the parent term is as follows:

Supp1L(g, m, E′, P ′) =
#(g ∧ m, E′, P ′) + #(gi ∧ m, E′, P ′|gi ∈ Child(g))

#(G, M, E′, P ′)
(2a)

Conf1L(g, m, E′, P ′) =
#(g ∧ m, E′, P ′) + #(gi ∧ m, E′, P ′|gi ∈ Child(g))

#((g ∨ gi) ∨ m, E′, P ′|gi ∈ Child(g))
(2b)

Fig. 6. Examples of one-level 1L Aggregation from child terms to parent term
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In this example, the original confidence for the association between parent gu

and mw was 1
4 , and the boosted confidence score is 1+1

5 = 2
5 .

4.2 Limitations of the Simple Solution

We present two cases that illustrate the limitation of the simple 1L counting
approach. Consider the termlinks of Figure 6(b). The original confidence scores
for the associations of gu, and g2, with mw, are 1

4 and 2
6 , respectively. We note

that these values are equal to the scores in Figure 6(a). Suppose that we use the
simple counting 1L approach to boost the confidence score. The boosted value
for confidence for the association between gu and mw will be 1+2

7 = 3
7 .

We note that the boosted confidence score of 3
7 in Figure 6(b) between gu and

mw is different from the boosted value of 2
5 of Figure 6(a). However, in both

cases, the original confidence scores between gu and mw, and between g2 and
mw, are identical. This is the first limitation. Intuitively, we would like to control
the contribution made by termlinks from the child CV terms, so that in a case
such as Figures 6(a) and (b), when the confidence of the child CV term is the
same, then there is an identical contribution to the parent CV term. With the
1L approach, the contribution to the parent CV term is not controlled by the
confidence of the child CV term but instead it is controlled by the number of
termlinks that refer to the child CV terms.

We next consider the situation where there is a variance in the confidence of
the associations of the sibling CV terms. In Figure 7(a), the confidence scores
for the associations of each of child terms, g1 or g2, with mw, is 3

8 , i.e., they are
of equal confidence. In Figure 7(b), there is a variance of the confidence scores of
the child terms. The confidence score of the association of g1 with mw is 1

8 , while
the confidence score in the association of g2 with mw is 5 times higher and is 5

8 .
In both Figures 7(a) and (b), the original confidence score of the association

of the parent gu with mw is 1
8 . Using the 1L approach, the boosted confidence

score for the association between gu and mw is also 1+3+3
10 = 7

10 , in both cases.
Ideally, when there is equal confidence in the associations of the sibling terms
(as in Figure 7(a)), this may be considered strong evidence that these siblings

Fig. 7. Examples of one-level 2SS Aggregation from child terms to parent term
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should boost the confidence in the associations of the parent term. On the other
hand, when there is a significant variance in the confidence of the sibling terms
(as in Figure 7(b)), it is unclear if these siblings are providing strong evidence to
boost the confidence in the parent term. Thus, referring to Figures 7(a) and (b),
when there is no variance in the confidence scores of the siblings as in Figure
7(a), the boost to the parent should be greater.

4.3 Comprehensive Solution for Aggregation (2SS)

We present the 2SS aggregation method; it will overcome both limitations of
the 1L approach. It will use a weight factor α to control the contribution to the
parent CV term using the confidence of the child CV terms. The value of α will
be determined based on the variance of the confidence of the sibling CV terms.
The support and confidence scores presented in Equations (3a) and (3b).

Supp2SS(g, m, E′, P ′)
= (1 − α) ∗ Supp(g, m, E′, P ′) + α ∗ Avg(Supp(gi, m, E′, P ′)|gi ∈ Child(g))

(3a)

Conf2SS(g, m, E′, P ′)
= (1 − α) ∗ Conf(g, m, E′, P ′) + α ∗ Avg(Conf(gi, m, E′, P ′)|gi ∈ Child(g))

(3b)

We summarize the features of the 2SS solution. First, we calculate the con-
fidence score for each of the child terms, and then we average the confidence
scores over all the child terms. We then use a weighting factor α to determine
the actual contribution from the the child terms that should be used to boost the
confidence score of the parent. We experiment with the following simple rule-of-
thumb to determine a value for α between 0 and 1

2 , where the value for α will
depend on the variance in the confidence scores for the child terms. To explain,
if there is high variance in the confidence score for each of the child terms of
some parent gu, then we will be less confident that we should aggregate over
these child terms and use the child terms to potentially boost the confidence
score in gu. If the variance in the confidence scores for the child terms is low,
we assign α = 1

2 to show that there is an equal importance between the weight
given to the parent term and the weight given to the child terms.

We note that based on the above expression, the boost to the parent gu is
greatest when the confidence score of each of the child terms is independently
high, and when there is low variance in the confidence score of the child terms.
The boost to gu is low when either the confidence score in each of the child
terms is low, or when there is a high variance in the confidence scores of all
child terms of gu. The boosted confidence score (with α = 1

2 ) in Figure 7(a)
is 1

2 × 1
8 + 1

2 × (3
8 + 3

8 ) = 1
4 . This value is higher compared to the boosted

confidence score (with α = 1
4 ) in Figure 7(b) which is 3

4 × 1
8 + 1

4 × (1
8 + 5

8 ) = 3
16 .

Although the difference between these two boosted confidence values is 1
16 , this

difference can have a major impact on the rank of the associations. However, in
our experiments, we use the same value of α for all associations.
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We note that the rule of thumb used to select a value of α will need to be
expanded to consider aggregation along multiple levels of the GO hierarchy, as
well as simultaneous aggregation along both the GO and MeSH hierarchies.

5 Related Work

We consider related work in generalized association rule mining, ranking and
ontology matching. Generalized association rule mining [11][12][13] creates an
extended transaction set either by replacing an item with a new item repre-
senting a generalized concept, or by aggregating both the original item and the
generalized item. We note that the generalized concept does not occur in their
original transaction set. Their solution approach is similar to our counting based
1L approach and faces the limitations that were discussed, i.e., controlling the
contribution of child CV terms and reflecting variance of confidence. [14] pro-
posed to assign a lower threshold of support for associations in the lower levels
of ontology. Furthermore, in order to reduce the search space by filtering associ-
ations contain independent items, the metric usefulness or interest is suggested
by [15]. They define R-interesting as a rule is interesting iff it has no predecessor
or its adjacent interesting predecessor is R-interest [16].

While there is extensive literature on ranking using link structure of a graph,
the focus is on ranking nodes in a general graph [17,18,19]. There is no work on
ranking an association bridge (edges) of a bi-partite graph and ranking typically
does not consider metadata such as the is-a hierarchy.

There is also research on ontology matching or ontology alignment [20,21,22].
The objective is to determine matches or correspondence between concepts or
between subgraphs. Their solutions are based on string similarity between the
labels of concepts, structural similarity and relationship patterns in the ontology.
[22] uses a technique similar to association rule mining. While this research
exploits similar knowledge, since the objectives are different, we typically cannot
apply any of their solutions.

6 Experimental Evaluation

6.1 Generating User Datasets

Disease related user datasets were generated using the corresponding OMIM
record. The protocol follows links from OMIM to Entrez Gene and then to
PubMed. Table 1 reports on the statistics of four disease related datasets. For
e.g., for the BREAST CANCER user dataset, the OMIM record has hyperlinks to 13
Entrez Gene records that are annotated with 147 distinct GO terms. Following
the hyperlinks from these 13 Entrez Gene records to PubMed, we obtain 3,237
distinct PubMed records that are annotated with 2,463 distinct MeSH descriptor
terms (of selected UMLS semantic types [23]). We generate 1,232,086 termlink
instances and collect 124,342 distinct associations pairs of a GO term and a
MeSH term. The one-level aggregation using the GO structured is-a hierarchy
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Table 1. Statistics in four disease-related user datasets

MIM Number 114480 114500 176807 191170
Title breast cancer colorectal cancer prostate cancer tumor protein p53

#(E′)1 13 14 13 12

#(G)3 147 135 117 44
#(P ′)4 3,237 2,827 1,518 1,888
#(M)5 2,463 2,594 1,624 1,889
#(G, M, E′, P ′) 1,232,086 1,189,379 339,491 986,612
#(G, M)6 124,342 123,343 57,735 83,116
#(Gnew)7 24 23 20 7
#(Gnew , M)8 18,648 18,002 9,539 13,223

introduces 24 new GO terms and 18,648 pairs of associations that did not occur
among the original termlinks.

6.2 Examples of Identifying Significant Associations Via
Aggregation

We use several user datasets to illustrate a range of opportunities to boost the
associations of the parent CV terms. We note that all these examples have been
verified to be meaningful and some are previously unknown.

We calculate a baseline confidence score, Conf , for associations of the parent
CV term that does not reflect aggregation evidence, and a boosted confidence
score Conf2SS . We also report on the original rank Rank and the new rank
Rank2SS . Note that for each user dataset, Rank2SS is determined over a com-
bination (union) of both the original pairs of associations of CV terms and
any new associations introduced via aggregation. For example, for the BREAST
CANCER dataset, RankSS will be determined over (124,342+18,648) associations.
We use constant values of α = 1

2 in the following four examples. Please note that
the boosted ranks on the child terms can be worsen than the baseline ranks, be-
cause the newly introduced parent term may have better ranks and the ranks of
some other parent terms may have been improved more.

The first example in Table 2 involves a parent GO term DNA binding and
its three child terms, transcription factor activity, damaged DNA binding
and sequence-specific DNA binding. The associated MeSH term is Cell
Cycle Proteins. We see that the parent term already has the highest confi-
dence score (among these associations) and has a rank of 156. The confidence

1 #(E′): number of Entrez Gene records hyperlinked to the OMIM record.
2 Corresponding to the human gene TP53 dataset in Sections 2 and 3.
3 #(G): number of distinct GO terms annotating E′.
4 #(P ′): number of distinct PubMed records hyperlinked to E′.
5 #(M): number of distinct MeSH terms annotating P ′.
6 #(G, M): number of distinct CV term associations.
7 #(Gnew): number of new GO terms introduced by aggregation.
8 #(Gnew , M): number of distinct CV term associations generated by aggregation.
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Table 2. BREAST CANCER user dataset having MeSH descriptor term Cell Cycle
Proteins

GO Term Parent GO Term Conf Rank Conf2SS Rank2SS

DNA binding 0.0180 156 0.0099 133
transcription factor activity DNA binding 0.0045 2,572 3,522

damaged DNA binding DNA binding 0.0005 31,030 38,349

sequence-specific DNA binding DNA binding 0.0005 31,030 38,349

Table 3. BREAST CANCER user dataset having MeSH descriptor term
1-Phosphatidylinositol 3-Kinase

GO Term Parent GO Term Conf Rank Conf2SS Rank2SS

phosphoinositide 0.0125 71
3-kinase activity

phosphatidylinositol-4,5- phosphoinositide 0.0325 29 32
bisphosphate 3-kinase activity 3-kinase activity

1-phosphatidylinositol- phosphoinositide 0.0175 161 195
3-kinase activity 3-kinase activity

score of the child terms are low and they are farther back in rank. There is also
high variance in the confidence score of the child terms. Nevertheless, there is a
positive contribution from the child terms and the parent term’s boosted rank
is 133. We note that the actual confidence score of the parent term has gone
down after boosting and we note that in general the scores for confidence score
tend to reduce after boosting. However, the rank is determined using the score
relative to other associations. Thus, while the actual score may reduce, the rank
may actually be improved.

In the second example in Table 3, the parent term phosphoinositide
3-kinase activity does not have a confidence score since there are no termlinks
for this GO term to the MeSH term 1-Phosphatidylinositol 3-Kinase. The
parent term has two child terms, phosphatidylinositol-4,5-bisphosphate
3-kinase activity and 1-phosphatidylinositol-3-kinase activity. Both
child terms have high confidence scores and their ranks are also very good, at 29
and 161, respectively. The variance in the child terms is also low. This is a situa-
tion where the boost provided by the child terms should be the most significant,
i.e., the confidence score in the child terms is high and variance in confidence
score is low. Thus, after the parent term is boosted, it too has a very good rank
of 71. We note that the rank of the child terms terms has worsened slightly. To
explain, there are several parent GO term associations that did not occur in the
original termlinks that have been introduced after aggregation. They tended to
be ranked ahead of the child terms from the example.

In the third example in Table 4, we consider the parent GO term protein
binding in the COLORECTAL CANCER user dataset. The parent GO term has
four child terms, enzyme binding, protein N-terminus binding, protein
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Table 4. COLORECTAL CANCER user dataset having MeSH descriptor term Tumor
Suppressor Protein p53

GO Term Parent GO Term Conf Rank Conf2SS Rank2SS

protein binding 0.0165 147 0.0126 93
enzyme binding protein binding 0.0174 101 129

protein N-terminus binding protein binding 0.0174 101 132

protein C-terminus binding protein binding 0.0004 40,481 47,729

insulin receptor substrate protein binding 0.0001 117,248 133,069
binding

Table 5. PROSTATE CANCER user dataset having MeSH descriptor term Kangai-1
Protein

GO Term Parent GO Term Conf Rank Conf2SS Rank2SS

integral to membrane 0.0429 14 0.0394 1
integral to plasma integral to membrane 0.0360 26 30
membrane

C-terminus binding and insulin receptor substrate binding. The con-
fidence scores of the associations of child terms enzyme binding and protein
N-terminus binding is high and their rank is 101. The confidence scores of the
other two child terms is very low. This is a case where the confidence scores in
two child terms is high and there is also high variance among the child terms’
confidence scores. The boost should not be as significant as in the previous case.
We see that the parent rank has improved from 147 to 93. Thus, the boost is
not as significant as in Table 3.

In the final example in Table 5, we consider the PROSTATE CANCER user
dataset. The parent term integral to membrane has only one child term
integral to plasma membrane. The associated MeSH term is Kangai-1
Protein. Both parent and child have high confidence scores and their rank is
within the Top 30. The boosted confidence score for the parent term pushes it to
rank first among the (57,735+9,539) associations for this user dataset! To sum-
marize, we use a variety of GO is-a hierarchies, and range of confidence scores
for the child terms, to illustrate the impact on the parent CV term.

6.3 Impact of α on Boosted Rank

We consider the BREAST CANCER dataset; it has 124,342 associations prior to
aggregation and 18,642 associations are added after aggregation. We select the
Top 300 associations (after 2SS boosting). Figure 8 reports on the rank Rank
before boosting (Y axis) and the rank Rank2SS after boosting (X axis), for the
Top 300. If an association did not occur in the original termlink dataset, its rank
is labeled no rank on the Y axis. We compare two α values, 1

2 and 1
4 .

A 45 degree line in Figure 8 represents the case where there is no change in
the rank from boosting. For α= 1

4 (labeled +), the contribution from the child
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Fig. 8. Impact (rank changes) of boosting confidence scores for BREAST CANCER user
dataset

terms is only 25%; hence we see many of these datum clustered around the no
change in rank line. There are a few datum scattered above the line indicating
cases where the ranks have improved after boosting.

For α= 1
2 (labeled •), the situation is quite different since the contribution

from the child terms is more significant at 50%. Many of the datum above the
baseline indicate improvement of the rank. Among these improvements, there
are six new associations (originally with no rank) and 21 associations whose
original ranks were greater than 8,000 that now occur in the Top 300.

7 Conclusion

We have presented an approach and preliminary evaluation to exploit knowledge
from ontologies and patterns of annotation to identify significant associations
jointly offer a bridge between a pair of ontologies. In future work, we will con-
sider further extensions, e.g., aggregating simultaneously using the structure of
both ontologies, aggregating up multiple levels, etc. We also plan an extensive
evaluation on termlinks to identify interesting patterns of annotation, and study
their impact on finding significant associations.
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Abstract. The information needed by biologists and physicians for research 
purposes is distributed over many heterogeneous sources. Integration systems 
provide a single, centralized and homogeneous interface for users to query mul-
tiple information sources simultaneously. The major limitation of integration 
systems, including mediator-based systems, is that the tasks involved in their 
creation and maintenance remain mainly manual. To address this limitation, we 
developed automated methods for facilitating the creation of a mediator-based 
system. We first implemented an automatic method for acquiring the local 
schemas of the sources to be integrated. We derived the global schema from the 
UMLS. Finally, we proposed schema- and instance-based approaches to map-
ping data elements from the local schemas to the global schema. To illustrate 
the applicability of our methods, we created a mediator-based system integrat-
ing eleven biomedical sources. This prototype is operational, available on the 
Internet (http://www.med.univ-rennes1.fr/cgi-bin/mougin/These/system.pl) and 
its evolution is managed semi-automatically. 

Keywords: data integration, mediator-based approach, schema-level mapping 
methods, instance-level mapping methods, biomedicine. 

1   Introduction 

Most of the information needed by physicians and biologists for research purposes is 
present in electronic biomedical resources available through the Internet. In addition, 
the biomedical domain is in constant evolution and generates considerable amounts of 
data. Collecting information manually is thus slow and error-prone. Integrating bio-
medical sources in order to facilitate global access to multiple, heterogeneous sources 
has become unavoidable [1]. Moreover, an integration system adapted to the biomedi-
cal domain should be easy to use for biologists and physicians, scalable, and provide 
up-to-date information. 

Three main integration approaches have been proposed to reconcile distributed 
sources in the biomedical domain: 
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• in datawarehouses, e.g., GUS [2], data are imported from various sources and 
stored locally in a single format. A direct limitation of datawarehouses is that, un-
less the local version of the sources is updated regularly in the warehouse, query 
results are not necessarily up-to-date. The evolution of such systems is typically a 
difficult issue. 

• path-based (or navigational) systems, e.g., BioGuide [3], correspond to graphs in 
which the various entities are linked by paths, making it possible for users to navi-
gate between sources. With such systems, users are responsible for following the 
links created across resources, which constitutes a limitation of navigational sys-
tems. Additionally, changes to the sources require links to be recomputed over the 
whole system. Unlike other approaches, path-based systems do not impose a con-
sistent view on the sources, which greatly facilitates their evolution. 

• with mediator-based systems, e.g., TAMBIS [4], data sources are queried dynami-
cally. This approach guarantees that users access up-to-date information, because 
only the schemas of the sources (or local schemas) are stored in the system. For 
this reason, mediator-based systems tend to evolve gracefully. This approach also 
facilitates the query task, since users interact with a single unified schema, the 
global schema. 

Existing mediator-based systems have been mostly created manually, which re-
mains an important limitation to their scalability and automatic evolution. It is thus 
essential to automate the tasks involved in the creation and maintenance of such sys-
tems [5]. Practically, as shown in Fig. 1, this means automating the acquisition of 
local schemas (step 1), the definition of the global schema (step 2), and the mapping 
of the local schemas to the global schema (step 3). 

 

Fig. 1. The mediator-based architecture and the three major steps for its conception: 1) sources 
schema acquisition, 2) definition of the global schema, and 3) mapping of the local schemas to 
the global schema 
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This paper addresses automation in the creation and maintenance of systems inte-
grating biomedical sources. More specifically, we propose automated methods for 
creating and maintaining mediator-based systems and apply them to a system we 
developed for integrating biomedical sources accessible over the Internet. The rest of 
this paper is organized as follows. We first present a method for extracting local 
schemas, based on the parsing of their Web pages. We show how we adapt an existing 
biomedical resource for creating the global schema: the Unified Medical language 
System® (UMLS®). Then, we present two complementary approaches to mapping 
local schemas to the global schema of our system automatically. The first one oper-
ates directly on the data elements (attributes such as gene symbol), while the other 
analyzes the data themselves (values such as BRCA1). Finally, we present an applica-
tion of these methods and examine their contribution to scalability management. 

2   Materials and Methods 

2.1   Materials  

Biomedical data sources. In collaboration with biologists, we defined criteria for 
selecting biomedical data sources. To be integrated in our system, they should: 

• contain data about general biomedical entities, such as genes, proteins, and dis-
eases; 

• be complementary: general and specialized data sources have to be integrated; 
• be accessible over the Internet. 

Among the data sources frequently used by biologists, and based on these criteria, we 
selected the following eleven biomedical sources for integration in our system: 

• genomic sources: GeneCards1, Entrez Gene2, Geneloc3, HGNC4, HGMD5, and 
MGI6; 

• protein sources: Swiss-Prot7, PDB8, HPRD9, Interpro10; 
• medical sources: OMIM11. 

The UMLS. The Unified Medical Language System® (UMLS®) [6] provides the  
core set of concepts and relations for the global schema. The UMLS is a terminologi-
cal resource that provides a wide coverage of the biomedical domain, including ter-
minologies for specialized clinical disciplines, the biomedical literature, and genome 
                                                           
 1  http://bioinformatics.weizmann.ac.il/cards/   
 2  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene  
 3  http://genecards.weizmann.ac.il/geneloc/  
 4  http://www.gene.ucl.ac.uk/nomenclature/  
 5  http://www.hgmd.org/  
 6  http://www.informatics.jax.org/  
 7  http://www.expasy.org/sprot/  
 8  http://www.rcsb.org/pdb/  
 9  http://www.hprd.org/  
10 http://www.ebi.ac.uk/interpro/  
11 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM  
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annotation. The UMLS consists of three major components. The UMLS Metathesau-
rus® is assembled by integrating more than 100 sources vocabularies. It contains 
about 1.4 million concepts (clusters of synonymous terms) and more than 22 million 
relations among these concepts. The UMLS Semantic Network is a limited network of 
135 semantic types. Each Metathesaurus concept is assigned to at least one semantic 
type. Finally, the Lexical Resources comprise the SPECIALIST Lexicon and Lexical 
Tools [7]. The UMLSKS API also provides various methods for identifying Metathe-
saurus concepts from input terms (exact and normalized matches). Additionally, the 
MetaMap Transfer (MMTx) program maps text to concepts in the Metathesaurus with 
additional flexibility (approximate match) [8]. 

2.2   Methods 

Step 1: Acquiring Local Schemas. One major problem with biomedical sources is 
that their schema is often unavailable and rarely exploitable in its original form. Our 
aim is to develop an automatic method for acquiring the local schema of any source 
accessible over the Internet. No standard has been defined for creating biomedical 
local schemas in a uniform way. Consequently, the exploitation of existing schemas 
(e.g., NCBI schemas) would have required the development of a specific program for 
each schema. Instead, we proposed to acquire the schema of each source dynamically 
by extracting data elements from Web pages for each biomedical source. Data ele-
ments (DEs) can be defined as a basic unit of information, built on standard structures 
and having both a unique meaning and distinct units or values12. In database parlance, 
DEs correspond to attributes, while their associated values are instances. We then 
developed a method for typing DEs in order to make their semantics explicit. 

 

Fig. 2. Web Pages obtained by querying Entrez Gene for human BRCA1, HBA1, and TF genes. 
DEs correspond to invariant elements across Web pages. Examples of DEs are circled. 

                                                           
12 http://www.atis.org/tg2k/_data_element.html 
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DE Extraction 

Starting from a list of 100 gene names and symbols randomly extracted from the Web 
site of the Genetics Home Reference13, we queried each source dynamically resulting 
in 100 Web pages sharing the same structure. The elements common to at least 75% 
of the Web pages were extracted automatically [9]. This selection resulted in eliminat-
ing specific information (e.g., a given gene name), while keeping general information 
(e.g., the term “Gene Name”). An example of DE extracted from the source Entrez 
Gene is given in Fig. 2. For instance, the terms “Official Symbol” and “Official Full 
Name” appear on all three pages and are therefore identified as candidate DEs.  

DE Typing 

We also recovered the values associated with each DE. In order to elicit the semantics 
of a given DE, we mapped its values to the UMLS, using exact and normalized 
matches (see section 2.1). We then selected the semantic type categorizing the major-
ity of the concepts associated with a given set of values. For example, we were able to 
determine that the DE Official Full Name relates to gene names, because the majority 
of its values are categorized by the semantic type Gene or Genome (Fig. 3 (a)). When 
the type of a DE could not be determined by this process, we attempted to assign 
coarser predefined types. We first isolated DEs containing specific terms. For in-
stance, when the terms “ID(s)” or “identifier” were found, the corresponding DE was 
typed as Identifier. Then, we analyzed the values characterwise and assigned the type 
Sequence to the DE when each of its non-empty values was a series of “A”, “G”, “C”, 
and “T”. Finally, the remaining DEs were typed as Integer or String according to their 
values. An example of the exploitation of DE values through heuristics is shown in 
Fig. 3 (b). 

 

Fig. 3. Examples illustrating the typing process of DEs. (a) Official Full Name is typed through 
the semantic type Gene or Genome; (b) Primer 1 is typed as a Sequence. 

As advocated in [10], sources schemas include general information (i.e., the name 
and URL of the source, as well as the kind of data in the source, e.g., gene, protein, or 
disease) in addition to the DEs and their types. Schemas are represented in XML, as 
no reasoning or specific advanced functionalities are required at this level. 

Step 2: Defining the Global Schema. As mentioned earlier, our global schema was 
derived from the UMLS. Inappropriate links causing cycles in the UMLS hierarchies 
                                                           
13 http://ghr.nlm.nih.gov/ 
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were eliminated, as advocated in [11]. After transformation into a Directed Acyclic 
Graph, the UMLS was represented with OWL DL, one version of the Web Ontology 
Language often used to represent biomedical ontologies. The UMLS elements useful 
to our system are represented as follows: 

• Semantic types and concepts are represented as classes; 
• The categorization relationship between concepts and semantic types is represented 

as a subclass relationship; 
• Hierarchical relations among semantic types were represented with the subclass 

relationship, as were hierarchical relations among concepts; 
• Semantic types and concepts have unique identifiers (from the UMLS). Other 

properties include a label (the preferred term of concepts and the name of semantic 
types), and a textual definition, when available. Specific to concepts is the property 
has_synonyms, which contains the synonyms of the concept. 

In the global schema, we represented only those UMLS semantic types, Metathe-
saurus concepts and relations necessary for the description of the DEs extracted from 
the eleven sources. 

Step 3: Mapping Local Schemas to the Global Schema. This mapping aims at 
identifying correspondences between DEs extracted from the sources (and their 
values) with the concepts from the global schema, which corresponds to the notion of 
“schema mapping” defined in [12] and [13]. Two distinct approaches were developed 
for this mapping. The first one operates at the schema level, as it only exploits the 
DEs. In contrast, the second approach is based on the values associated with the DEs 
and lies at the instance level. 

Schema-Level Mapping 

For mapping DEs directly to the UMLS, we first attempted to find an exact match. If 
none was found, a match was performed after normalization. These two steps were 
implemented through the corresponding methods of the UMLSKS API. Finally, an 
approximate match was attempted using MMTx (strict model). This process resulted 
in three types of mappings: 

• unique match, e.g., the DE mRNA was mapped to the concept RNA, Messenger by 
exact match; 

• multiple matches, e.g., the DE Interactions resulted in an exact match to two 
UMLS concepts: Social Interaction and Drug Interactions; 

• no match. Some DEs were simply not mapped to any UMLS concepts, because 
they are not specific to the biomedical domain. Examples of such DEs include To-
pology, Products, and Domains. 

This automatic mapping method is efficient when a unique match is found, but is 
insufficient in the two other cases. More precisely, multiple matches require disam-
biguation and a different mapping method needs to be utilized when no direct match 
to UMLS concepts is found. We thus developed an alternative mapping method which 
exploits a different external resource: WordNet (WN) [14], an online lexical database 
of general English. WN is organized into a hierarchy of synsets (sets of synonymous 
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terms) and contains more than 155,000 lexical items aggregated into about 117,000 
synsets. In WN, ancestors and descendants are called hypernyms and hyponyms, 
respectively. Our hypothesis is that general resources such as WN could provide a 
complementary coverage of the domain described by the DEs under investigation. By 
exploiting the properties of WN, we expect to improve the mapping of DEs to the 
UMLS in the following ways. In case of unique matches, WN would help validate the 
UMLS mappings. For multiple matches, WN would contribute external information, 
useful for disambiguating UMLS mappings. Finally, WN would help identify indirect 
mappings to the UMLS when no direct UMLS mapping was found. 

Validating unique mappings to UMLS. If the mapping to WN was unique, we ex-
ploited the properties of the candidate synset to validate the mapping to the UMLS. 
Toward this end, we compared the concept and synset according to the following 
criteria, in this order: 1) similarity of their definitions, 2) presence of common syno-
nyms, and 3) presence of common ancestors. For criterion 1, after eliminating stop 
words, we normalized the remaining words into their base forms, which we then used 
for identifying common words between definitions. For criteria 2 and 3, we mapped 
the synonyms and hypernyms of the WN synset to the UMLS through exact and nor-
malized matches. We then compared the results to the synonyms and ancestors of 
concepts obtained during the direct match of DEs to the UMLS. 

Disambiguating multiple mappings to UMLS. In order to disambiguate the multiple 
mappings of a DE to the UMLS, we mapped it to WN, resulting in one or more syn-
sets for this DE. We then associated pairwise the UMLS concepts and WN synsets, 
and selected the best (concept,synset) pair using the similarity criteria described 
above for the validation of unique mappings. 

Identifying indirect mappings to UMLS through WN. For those DEs for which no 
mapping to UMLS concepts was found (i.e., when the only mapping candidates are 
WN synsets), we tried to find an equivalent UMLS concept not from the DE itself, but 
from its mapping to WN. Starting from the WN synset(s) mapped to, we first at-
tempted to map each of the synonyms in the synset(s) to the UMLS, using exact and 
normalized matches as before. If no synonym was mapped to UMLS, we started an 
equivalent mapping process from the direct hypernyms of the synset(s). The resulting 
concepts constitute candidates for indirect mappings of DEs to UMLS through WN. 

Instance-Level Mapping. It is also possible to map DEs to the UMLS based not on 
their names, but on their values. Our hypothesis is that DEs sharing a large number of 
values are likely to correspond to the same entity and can thus be mapped to the same 
UMLS concept. In practice, we computed the Jaccard similarity for each (DE1, DE2) 
pair (formula (1)) defined in [15]. 

 .
2121

21

cccc

cc
SimJaccard −+

=  (1) 

where c1 and c2 are the cardinalities of the value sets for DE1 and DE2, respectively, and 
c1c2, the cardinality of their intersection. Two DEs are deemed equivalent if the similar-
ity between their value sets is above the threshold of 0.50, determined heuristically. 
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3   Results 

We first report the results obtained through the methods developed to support the 
creation of our mediator-based system. More precisely, we present the local schemas, 
the global schema, and the mappings between them. Then, we present the system we 
created for integrating eleven biomedical sources. 

3.1   Basic Elements of Our Mediator-Based System 

Local Schemas. Overall, we extracted 548 DEs (474 distinct) from the eleven 
sources, of which 62 (11.3%) could be characterized with datatypes more specific 
than String. Detailed results are given Table 1. Local schemas are available as sup-
plementary material at: http://www.med.univ-rennes1.fr/~mougin/schemas/.  

Table 1. Results obtained for typing the DEs extracted from the sources. For each type, the 
number of DEs is given, followed by an example of DE and some of its associated values. 

Type Number of 
DEs having 
this type 

Examples of
typed DEs 

Examples of associated values 

Semantic type 36 (6.6%) From (Organism) Rattus norvegicus, Homo sapiens 

Integer 18 (3.3%) Molecular Weight 207732, 464482 

Identifier 6 (1.1%) Accession Numbers U14680, X71923 

Sequence 2 (0.3%) Primer 2 GAGATCGCCTCACC 

String 486 (86.9%) Bibliography (Earliest) J:31493 Hall JM et al., 
“Linkage of early-onset familial 
breast cancer to chromosome 17q21” 
Science 1990;250(4988):1684-9 

The Global Schema. Overall, the global schema contains the 135 UMLS semantic 
types and 3,542 Metathesaurus concepts. In addition to the concepts resulting from 
the mapping of DEs to the UMLS, we included the ancestors of these concepts in the 
UMLS in order to preserve the hierarchical organization of this set of concepts for 
navigation purposes. The global schema is available at: http://www.med.univ-
rennes1.fr/~mougin/onto/schema_global_with_wn.owl. 

In addition, some concepts of the global schema have been enriched with three WN 
properties has_wn_definition, has_wn_synonyms, and has_wn_hypernyms. Actually, 
for those concepts mapped to WN synsets (n = 106), we chose to add the properties  
of these synsets to the description of the corresponding concept in the global schema, 
as illustrated by the concept Citation in Fig. 4. This concept was mapped to the synset 
citation#n#3 because their definitions share similar words (criterion 1). As a result,  
the concept Citation, which originally has no synonyms in the UMLS, inherits the 
synonyms of the synset citation#n#3 in our global schema. 
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<owl:Class rdf:ID="C0552371"> 

 <rdfs:label>Citation</rdfs:label> 

 <has_definition>An extract or quotation from or reference to an 

 authoritative source</has_definition> 

<has_wn_definition>a short note recognizing a source of information or of a quoted passage 

</has_wn_definition>
    <has_wn_synonyms>citation, cite, acknowledgment, credit, reference, mention, quotation 

</has_wn_synonyms> 
<has_wn_hypernyms>note#n#6%%comment#n#2%%statement#n#1%%mesage#n#2%% 

 communication#n#2%%abstraction#n#6%%abstract_entity#n#1%%entity#n#1 

</has_wn_hypernyms>
    <rdfs:subClassOf rdf:resource="#T032"/> 

    <rdfs:subClassOf rdf:resource="#C1254372"/> 

</owl:Class> 
 

Fig. 4. Representation of the concept Citation in the global schema. The properties obtained 
through WN are bold-faced. 

Mapping Local Schemas to the Global Schema 

Schema-Level Mapping. 387 of the 474 DEs (82%) were found directly in the UMLS, 
including 187 unique mappings and 200 multiple mappings. Only 87 DEs were not 
mapped to UMLS concepts. 

As illustrated in Fig. 5 (a), WN provided supporting evidence for validating 82 
unique mappings of DEs to UMLS (43.9%). WN also contributed to the disambigua-
tion of 95 of multiple mappings (Fig. 5 (b)). Finally, 36 additional DEs were mapped 
to the UMLS using WN, through synonyms (16) and direct hypernyms (20), as shown 
in Fig. 5 (c) and (d), respectively. 

Overall, 423 DEs were mapped to the UMLS and 74% of all mappings were ex-
ploitable automatically. The remaining mappings required some degree of manual 
intervention before they could be used in the system, including disambiguation of 
multiple mappings to the UMLS directly (105) or through WN (6). For example, the  
 

 

Fig. 5. Examples of cases where WN improves the direct mapping of DEs to UMLS. (a) the 
validation of a direct mapping; (b) the disambiguation of a multiple mapping; (c) and (d) the 
identification of new indirect mappings. 
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DE Contributor is mapped to two synsets: contributor#n#1 and contributor#n#2. The for-
mer has “Writer” and “Author” as its direct hypernyms, which both exist in UMLS. 
contributor#n#2 has the direct ascendant “Donor”, which is also found in the UMLS. In 
this case, a manual review is necessary to select which of the proposed indirect map-
pings is correct, if any. 

Instance-Level Mapping. By exploiting their values, 36 of the 548 DEs were associ-
ated with a UMLS semantic type (see Table 1). For example, the DE From, (Swiss-
Prot) could not be mapped to the UMLS directly. However, its values (e.g., Rattus 
norvegicus, Homo sapiens) were mapped to UMLS concepts whose semantic types 
are descendants of Organism, indicating that the DE From represents the organism in 
which a protein is expressed. A new mapping between the DE From and the UMLS 
semantic type Organism was thus added in the global schema. 

Only eleven pairs of DEs had a Jaccard similarity greater than the 0.50 threshold 
and were used to create additional mappings. For example, the DEs Approved Symbol 
(HGNC) and Gene Symbol (HGMD) have similar values (Jaccard = 0.80). Approved 
Symbol can thus be understood as denoting gene symbols (as opposed to protein sym-
bols, for instance). Consequently, a new mapping can be identified between this DE 
and the UMLS concept Genes. 

This example also illustrates how this method can be used for the validation of ex-
isting mappings found at the schema level, such as the mappings of Approved Symbol 
and Gene Symbol to the concept Symbols (they indeed contain symbols). Conversely, 
this method can help discover mappings wrongly identified at the schema level. For 
example, the DEs Approved Symbol and Gene Name (Entrez Gene) have a Jaccard 
similarity of 0.9214, suggesting that one of these DEs mischaracterizes its values. 
After manual inspection, we determined that the values of the DE Gene Name actu-
ally correspond to gene symbols, not gene names. In this case, this method is useful 
for two reasons: the infelicitous mapping between the DE Gene Name and the concept 
Names was eliminated and a supplementary mapping was added between this DE and 
the concept Symbols. 

3.2   Application 

We created a prototype of mediator-based system, based on the elements presented 
above. We now present the architecture of our system, its query processing and evolu-
tion features. 

Architecture and Availability. Our mediator-based system is composed of a 
mediator and eleven wrappers (one for each biomedical source). The mediator 
consists of the global schema and the set of mappings identified between concepts  
of the global schema and DEs. Each wrapper is composed of the local schema and  
the program developed for extracting DE values, which is also used for querying  
the corresponding source. The system is available at the following URL: http:// 
www.med.univ-rennes1.fr/cgi-bin/mougin/These/system.pl. 
 

                                                           
14 Among the 100 Web pages obtained in the two sources, each DE contains 96 non empty 

values and 92 are identical. Their Jaccard similarity is thus equal to 0,92. 
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Query Processing.  The query processing includes five steps.  

1. Users indicate (i) for which kind of entity they are looking (e.g., a gene name), (ii) 
the name(s) of the entity selected, (e.g., “hemoglobin, alpha 1” or “breast cancer, 
early onset”), and (iii) the type of information they want to obtain (e.g., “citation”). 

2. Then, the mediator identifies elements in the global schema that are relevant to the 
query. To this end, the mediator searches among the following terms: 
• preferred terms of concepts and semantic types; 
• synonyms of concepts in the UMLS; 
• synonyms coming from WN, if any. 

3. Once these elements have been identified, query expansion is performed using the 
hierarchy [16]. All the descendants of the elements selected by the mediator are 
added to the set of concepts potentially relevant to the query. Moreover, elements 
whose WN hypernyms are terms of the query are also selected. Consider, for ex-
ample, a biologist who is looking for comments about a given gene. No DE is as-
sociated with the term “comments”. But after query expansion, the mediator selects 
the concept Citation (whose WN hypernyms include Comment - see Fig. 4), which, 
in turn, is mapped to some DEs, such as Primary Citation (PDB). Once the relevant 
elements have been identified in the global schema, the mediator exploits the set of 
mappings existing between the global schema and the DEs.  

4. Then, wrappers recover the values associated with relevant DEs in each source and 
return them to the mediator. 

5. Finally, the mediator combines the values obtained from the different sources and 
delivers them to users. The mediator uses the Jaccard similarity to detect similar in-
formation among DE values and eliminates redundant results. 

Evolution and Scalability. Our system is designed to evolve gracefully, as the same 
processes used for its creation also participate in its evolution. In fact, the two major  
events in the evolution of a mediator-based system are the integration of a new source 
and changes to an existing source (Table 2). 

When a new source is added, the three steps depicted in Fig. 1 have to be per-
formed. Once general information about the new source has been collected and the 
program which extracts DE values from the source has been written, all the remaining 
tasks of the local schema acquisition are executed automatically. The mapping to the 
global schema is also performed automatically. A manual validation is necessary only 
in case of ambiguous mappings. 

The update of an existing source can occur for different reasons. When the output 
format of results provided on the Web site changes, the program that queries this 
source dynamically to recover DE values has to be modified. In contrast, when the 
DEs of the given source have been modified, all the tasks necessary to updating the 
system are automatic (from DEs extraction to the modification of the global schema - 
see Table 2 for details). 
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Table 2. Summary of the steps necessary to manage the evolution of the system. Tasks per-
formed automatically are bold-faced and for each manual task, we indicate if an interface is 
available to facilitate administrators’ intervention. Tasks followed by a star are necessary only 
when a new source is added to the system. 

Step Task Interface 

Collect of general information* yes 

Creation of the program that recovers DE values* no Local schemas 
creation / modification 

DE extraction, typing DEs, and XML schemas 
creation 

 

Direct, indirect, and through DE values  Mappings between 
local schemas and the 
global schema Validation, if any yes 

Global schema 
creation / modification  

Integration of new concepts in the global schema  

4   Discussion 

Our objective was to automate as much as possible the creation and maintenance of 
an integration system. Toward this end, we developed methods for automatically 
mapping elements of sources schemas to those of the global schema. Here, we resume 
the contributions of our approach, discuss some of its limitations and outline how they 
could be addressed in future work. 

4.1   Contribution of the Proposed Methods 

Reuse of Existing Terminologies. The global schema of our system is based on ex-
isting terminological resources. We created it by adapting the UMLS to our needs, 
rather than creating a new ontology. Most existing biomedical mediator-based sys-
tems developed their own ontology, so that it suits exactly the requirements for the 
global schema of the integration system. For example, the developers of TAMBIS [4] 
created the ontology TAO [17], and designed it specifically to function as the global 
schema of the TAMBIS system. In contrast, we reused an independently-developed, 
multi-purpose terminological system, the UMLS. Reusing the UMLS was more com-
plex, as it required us to eliminate cycles in the Metathesaurus and to determine which 
subset of UMLS concepts would be useful in our system. 

Moreover, we enriched the global schema using WN. It actually provides complemen-
tary coverage of the DEs extracted from the eleven sources, some of which were not 
specific to the biomedical domain. WN thus provided additional definitions and syno-
nyms for these concepts, and contributed to the identification of additional mappings. 

Hybrid Mapping Approach. The schema-based approach illustrates the benefit  
of using an external resource to refine and complement the direct mapping strategy 
[18]. The use of WN indeed contributed to a substantial improvement of the results 
obtained by mapping DEs to the UMLS directly. Through the use of WN, the number 
of DEs unmapped to the global schema decreased by more than 40%. Moreover, 
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nearly half of the unique and multiple direct mappings were validated and 
disambiguated, respectively. 

The instance-based approach was useful for resolving in part the vertical integra-
tion, whose aim is to eliminate redundant data existing in biomedical sources [19]. 
This is a key issue that has not been addressed by existing integration systems such as 
TAMBIS [4], BioMediator [20], and BACIIS [21]. This approach is useful during the 
query process, when the mediator consolidates the results obtained from each source. 
The mediator simply uses the Jaccard similarity computed between pairs of DEs to 
detect and eliminate redundant information. 

Finally, while used routinely in other domains, the combination of schema and  
instance approaches is original in the biomedical domain. Although underlined as nec-
essary by [22], the exploitation of both levels had not been implemented for creating 
biomedical integration systems. In contrast, the hybrid approach is widespread in the 
artificial intelligence community, mainly for mapping schemas or ontologies [23]. More 
recently, it has also been exploited for integration purpose [24]. The instance-based 
approach leverages the semantics of DEs through their values. We showed that map-
pings obtained at the schema level can be valuable and that the instance-based approach 
can complement and cross-validate the traditional schema-based approaches. 

4.2   Limitations 

Query Processor. Although successful for recovering data from disparate sources 
automatically, our query processor could be improved. In the current implementation, 
the words constituting the query are mapped independently to elements of the global 
schema. As a consequence, some of the DEs identified as candidates to answer the 
query can be inappropriate. For example, a query such as “laboratory results obtained 
for the hepcidin gene” results (among other DEs) in the DE Mouse, Rat. This is due to 
the presence of “Laboratory Mouse” among the synonyms of the concept mapped to 
this DE. To address this issue, we should adapt the query process so that it considers 
some kind of combination of the words from the query. 

The associative relations among concepts asserted in the UMLS could be added to 
the global schema (in complement to its hierarchical backbone) and used during the 
query process. In practice, neighboring concepts could used for query expansion pur-
poses, automatically or after interactive selection by users. 

The query process currently does not exploit the cross-references existing in the in-
tegrated sources. As it is done in path-based approaches [25], our system could follow 
the hyperlinks to recover information in other sources and provide more complete 
results to users. The method we developed for extracting DEs from the biomedical 
sources also recovers the cross-references dynamically. It would thus be possible to 
consider their inclusion during the query process. 

Ontology Issues. Although represented in OWL DL, our global schema is not based 
on a formal ontology as it relies on the UMLS [26]. Other representation formalisms 
could have been more appropriate for describing terminological features of the 
UMLS. For example, SKOS (Simple Knowledge Organisation System) [27] is an 
emerging standard for the representation of concepts and simple structures relating 
concepts with associated relations (e.g., narrower than). We chose OWL DL, because 
it provides more expressivity and supports automatic classification [28], from which 
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our system could benefit. In order to benefit from such services, however, we would 
have to enrich concepts descriptions with properties, which could be used for query 
reformulation. For example, in a query about proteins, the mediator would be able to 
eliminate concepts for entities other than proteins. Ontology-driven query 
reformulation would contribute to improve the accuracy of the results. 

4.3   Perspectives 

Enhancing Mapping Approaches. Our mapping strategy could benefit from other 
methods in ontology matching, surveyed in [12] and [13]. For example, the schema-
based approach could be enhanced by the use of relations, as implemented in [29]. 
Indeed, the explicit relationships provided by some source vocabularies in the UMLS 
[30] and in WN could be exploited to refine the mappings already identified. 

The results obtained through the instance-based approach are promising and could 
also be refined in several ways. The heuristics currently used for analyzing the DE 
values only identified a limited number of predefined types. Pattern detection could 
be used to identify new complex types, e.g., bibliographic references. Finally, the 
method used for comparing sets of values of distinct DEs could benefit from the use 
of learning techniques, as realized in [31]. 

Combination with existing systems. Some existing mediator-based systems, such as 
TAMBIS [4] in the biomedical domain, have developed a robust query processor. An 
interesting perspective could be to combine the best features of several systems. For 
example, creation and maintenance tasks (i.e., local schema acquisition and their 
mapping to the global schema) could be handled automatically by our system, while 
the query processing would be performed by another system, such as TAMBIS. This 
combination would contribute to enhance the coverage of an existing system (by 
feeding it with additional sources), while preserving desirable features, such as 
efficient query processing. 

Generalization. The automatic methods proposed to create a mediator-based system 
should be applicable to other integration approaches. On the one hand, the method 
developed to acquire local schemas could be useful for the three types of integration 
approaches introduced in section 1. Indeed, they all require the identification of 
relevant information about sources, especially their schema. 

On the other hand, the mapping techniques could be helpful for integration systems 
that include a global schema. In fact, once a global schema has been defined, it is 
necessary to associate its elements with those present in the local schemas. The peer-
to-peer approach could particularly benefit from our work because the multiplicity of 
components in this type of architecture necessitates many mapping tasks among the 
numerous schemas [32]. 

In summary, we presented automated methods for creating an integration system 
based on the mediation approach for the biomedical domain. Existing systems show 
weaknesses in terms of automation of conception and evolution processes. The main 
contribution of this paper is to propose automated methods for acquiring sources 
schemas and mapping them to the global schema of the system. 
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Abstract. It is not always clear how best to represent integrated data
sets, and which application and database features allow a scientist to take
best advantage of data coming from various information sources. To im-
prove the use of integrated data visualisation in candidate gene finding,
we carried out a user study comparing an existing general-purpose ge-
netics visualisation and query system, Ensembl, to our new application,
VisGenome. We report on experiments verifying the correctness of visual
querying in VisGenome, and take advantage of software assessment tech-
niques which are still uncommon in bioinformatics, including asking the
users to perform a set of tasks, fill in a questionnaire and participate in an
interview. As VisGenome offers smooth zooming and panning driven by
mouse actions and a small number of search and view adjustment menus,
and Ensembl offers a large amount of data in query interfaces and click-
able images, we hypothesised that a simplified interface supported by
smooth zooming will help the user in their work. The user study con-
firmed our expectations, as more users correctly completed data finding
tasks in VisGenome than in Ensembl. This shows that improved inter-
activity and a novel comparative genome representation showing data at
various levels of detail support correct data analysis in the context of
cross-species QTL and candidate gene finding. Further, we found that a
user study gave us new insights and showed new challenges in produc-
ing tools that support complex data analysis scenarios in the life sciences.

Keywords: visualisation of large data sets, genome maps, genome visu-
alisation, user study, QTL, comparative and functional genomics.

1 Introduction

Data visualisation helps in the understanding of complex biological relationships,
and is widely used in genomics [9,11,19,20,28], taxonomy [10], proteomics, and
pathway analysis [29]. Genome data is usually served by a database system,
as the amounts of data that need to be shown exceed by far the amount of
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RAM available on a user machine. Significant effort goes at design time into
deciding how much data to fetch from the database and how to lay it out on the
screen [2,13,27]. What usually does not happen in bioinformatics is recognising
the evolving needs of the visualisation user. New data types and larger volumes
cause not only purely technical problems, but also perceptual ones. Adding more
data ‘tracks’ to a visualisation, accompanied by more colours and labels, may
overwhelm the user, as discussed by Catarci [5], and shown in this paper. Also,
the only reliable way of anticipating and discovering user interaction problems
is via a user study [7]. This paper addresses the problem of reducing the visual
overload in the face of large data volumes, an issue which lies on the boundary of
database and visualisation research, via a user study carried out in a controlled
environment. The results of this study are being fed into further development
work, and are still providing food for thought.

The motivation behind the work we report on is the need to carry out compar-
ative analyses of QTL1, gene and protein expression and synteny in the human,
the mouse and the rat, forming part of the search for genes causing cardiovas-
cular disease, and done in collaboration between several research groups in the
UK and abroad. We first tried to find a suitable visualisation, and carried out a
short study of the available browsers [18]. We discovered that the development
of most browsers was not accompanied by usability studies, or such studies have
not been published. We also saw that none of the viewers allowed us to see the
data the way we want to view them. Expressionview [9], for example, shows
QTLs and micro array probes and no other data, so it was not suitable for our
work. SyntenyVista [13] shows a comparative view of two genomes but is lim-
ited with regard to other data such as micro array probes. Since the work of
the British Heart Foundation Cardiovascular Research Centre at Glasgow [21]
and of our collaborators requires the analysis of data of high complexity, we
decided to learn from the existing packages and produce yet another genome
browser. What we found missing in most browsers was the fact that it was hard
to see large and small objects at the same time, and that zooming was a limiting
factor. In [11] the authors recently stated explicitly that Ensembl zooming is
not as flexible as maps.google.com. Since the main representational problem in
our mind is zooming, this is the major technical issue we addressed, and our
work examines the use of improved zooming and its contribution to the ease of
traversing the genome space. We hypothesise that improved zooming will offer
both usability and cognitive benefits, and aim to prove that experimentally, by
comparing VisGenome and Ensembl with respect to the ease of finding of large
and small objects (QTLs and micro array probes).

This paper presents the following contributions. We summarise the design
and results of a user study including 15 participants which demonstrated that
the users are more successful in VisGenome than in Ensembl use [16] ] in the
context of candidate gene analysis. Further, we discuss the findings from a user
questionnaire, providing evidence that VisGenome is perceived to be easier to

1 A quantitative trait locus (QTL) is a region of DNA that is associated with a par-
ticular phenotypic trait.



VisGenome and Ensembl: Usability of Integrated Genome Maps 79

use than Ensembl. This is due to a combination of factors, including smooth
zooming, provision of comparative genome views, and a simpler monochromatic
display. The paper is structured as follows. Section 2 focuses on user studies in
databases and bioinformatics, and Section 3 introduces VisGenome and Ensembl.
Our user study design is presented in Section 4, and the results are described in
Section 5. Section 6 gives a discussion, and Section 7 concludes.

2 Related Work

We first review some work spanning the areas of databases, visualisation and
human computer interaction, and then summarise a number of bioinformatics
user studies.

Catarci [5] was one of the first authors to convincingly argue the importance
of user-centred design in the construction of user interfaces to database systems.
Query construction is the focus of her work, and the design and testing process
has to deliver interfaces that support efficient working and minimise user dis-
satisfaction and the need for assistance and maintenance. The main argument
is that this can only be achieved via user-centred design, and requires the fol-
lowing: user involvement; a clear identification of user requirements, tasks and
context; an appropriate split of functions between the user and the system; itera-
tive design; and multidisciplinary competencies in the design team. To determine
whether a system satisfies all user objectives, a formal evaluation needs to be
carried out in a realistic context. As such evaluations are expensive and time-
consuming, they are usually avoided, and the resulting systems are only judged
in terms of correctness and functionality, and may well be suboptimal and cause
user stress and additional costs to the organisation which commissioned them.
One of the important points raised by Catarci is the issue of completeness and
correctness of data representation. She finds that over-featured interfaces do not
work well, as the complexity gets in the way of understanding the system and
working out how to use it. Additionally, usability has an additional cost in terms
of decrease in software production rate, and user satisfaction is never considered
as an instrument to define the contract terms in software provision. As a re-
sult, also in the research context, usability issues are often ignored in favour of
a narrow focus on selected information system aspects, such as performance or
correctness.

A number of papers on the boundary of visualisation, e-science and database
areas deal with provenance, data caching, and workflows, but address usability
only in terms of user efficiency. VisTrails [4] solves the problem of visualisation
from a database perspective, by managing the data and metadata of visualisation
products. Workflows and provenance management are described in [22] and [6].
Here, a visualisation is used to allow the user to understand data provenance
and modify existing analysis procedures (workflows). To our knowledge, no user
studies have been published.

Recently, Jagadish and co-authors [15] broadened our understanding of the
term usability in the context of database work. Starting from the observation
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that currently DBAs have to mediate between the user and the database, to hide
the underlying system complexity, they draw an agenda of database usability
challenges. They advocate the development of new database techniques which in
their underlying design will focus on enabling direct interaction modalities for
a database user. The future will be a WYSIWYG database with instantaneous-
response interfaces, contextual displays, zooming and panning applying not just
to maps but to all levels of database reality, including schemas, design activities,
database evolution and provenance. To achieve that future, the authors propose a
new presentation data model, which may be denormalised and will support direct
user interaction, that is direct database creation, evolution, data manipulation,
and structural changes to data. Some of the presentation modalities will include
map mashups [14,8], graph representations, multidimensional database facilities
and tabular metaphors for data display. In data manipulation, the user interface
will take advantage of a new simple algebra that will be easy to understand
and intuitive to use. The proposed research scenario includes future user studies
which will guide the development of both abstract models and practical database
optimisations.

We now turn our attention to bioinformatics. In this area, only a small num-
ber of user studies have been published, while many application notes and other
papers published in journals Bioinformatics and BMC Bioinformatics claim that
the software is ‘user friendly’. For papers published in Bioinformatics between
January 2000 and December 2007 the journal’s search facility delivers 284 hits
for the query ‘user friendly’, two for ‘user study’, and 53 for ‘usability’. This
may mean that most usability claims are not well founded. In one of the early
papers mentioning the word ‘user’, Stevens et al. [26] presented a survey of
bioinformatics tasks undertaken by biologists. They reported on new require-
ments which could stimulate the development of future applications, but did not
conduct a user study. Wu et al. [28] reported on an electronic table that uses
fisheye distortion. The table showing gene expression data was a subject of a
pilot user study including five researchers completing a Questionnaire for User
Interface Satisfaction (QUIS) [25]. Yang and colleagues [29] observed biologists
interacting with a new software package and analysing experimental data, how-
ever, a formal study has not taken place. Graham and colleagues [10] presented
an informal user study with biologists from the Royal Botanic Garden Edin-
burgh. The users carried out 12 tasks and used two prototypes of a visualisation
tool. The authors received feedback from the participants and recognised that
none of the prototypes was perfect and they should develop a new one which
combined the existing two prototypes. These findings are similar to the views of
the users in our study, and the feedback we obtained is reflected in our current
engineering work.

3 VisGenome and Ensembl

VisGenome (VG) [17], see Figure 1 (left), shows single and comparative repre-
sentations of the rat, the mouse and the human chromosomes at different levels
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Fig. 1. Gene XR 007958.1 on rat chr. 2 in VisGenome and Ensembl, with the gene
name and position in a frame superimposed on the screenshots. A: VisGenome, single
chromosome view. B: VisGenome, comparative view of the rat chr. 2 and the human
chr. 18. (C-F) Ensembl ContigView. (C) The entire chromosome, (D) An ‘Overview’
of a region of 1 Mbp, (E) The ‘Detailed View’ showing markers and genes, and (F) A
‘Basepair View’ showing protein translations.
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Fig. 2. Overview of rat chromosome 2 in Ensembl version 40

of detail, and integrates data from Ensembl [11] , locally produced lab results
and [12]. It offers an overview of all rat, mouse and human chromosomes. After
choosing a chromosome of interest, the user sees it in a new view with detailed
data. The view supports interaction by mouse and keyboard, such as smooth
zooming and panning [2] which is more flexible than seen in other browsers. The
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Table 1. Example data sizes, Ensembl version 40, Aug 2006

Species Chromosome length genes microarray microarray SNPs QTLs
probesets probes

rat 2 250 Mbp 1413 1870 71,141 2740 ∼100

users can keep an area of interest in focus and choose the chromosome region
by dragging the box enclosing the region or typing in the coordinates in an info
panel. Then only the data in the selected area is displayed. The aim is to provide
the context and allow the researchers to navigate the data at the same time. VG
retrieves supporting web pages from Ensembl by invoking a link in a browser.

Ensembl (Ens) is probably the most popular system for mammalian genome
analysis. It offers 17 different views, including ChromoView, ContigView, Gene-
View, MultiContigView, SNPView, and SyntenyView. In our experiment, bi-
ological and medical researchers used ContigView, MultiContigView and Syn-
tenyView. ContigView, see Figure 1, shows different views of a gene, from broad
chromosome context to fine nucleotide detail. These views are in separate hor-
izontal frames, one below the other, and the user has to scroll as all views do
not fit on a computer screen. There is also a chromosome overview facility, Cy-
toView, shown in Figure 2. This view does not fit on the screen either and
requires scrolling. In Ensembl data items are labelled and searching on names
and coordinates is possible. Zooming uses buttons (Fig. 1, panels E and F).
MultiContigView is an extension of ContigView and is meant to support com-
parative genome analysis. It displays genome annotation for several species. In
SyntenyView a clickable high-level view of chromosomes with blocks of conserved
synteny is shown.

Data in Ensembl is stored in a relational database system and can be accessed
via SQL or a Perl API. When the experiment was conducted, we accessed the
database via JDBC and stored local experimental data and data from [12] in a
local relational database. We visualised only genes, QTLs and microarray probes,
and did not show SNPs or probesets, as those were not required. The requirement
to show micro array probe mappings in three species increases the data size by
at least a factor of 10, as each gene may have a matching micro array probe
set, consisting of up to 10 probes, and each probe may have produced positive
or negative results in a number of different experiments. The amount of data
to be shown is significant, and is user-specific, as it may include arbitrary data
sources, resulting from recent publications or experiments. Table 1 and Figure 2
give an idea of the number of items that have to be fetched from Ensembl to
generate a chromosome overview, and make it clear that adding more data items
and types will cause both performance and perceptual problems.

4 A User Study

The aim of the user study was to find out if new ways of visually querying the
data, via mouse manipulation and zooming, are effective. Another question was
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whether the layout and colours we proposed supported the user in finding the
data they are interested in. As our target users spend most of their time studying
QTLs in the mouse, rat and human, we focus on supporting this activity, and
ignore other aspects of tool use. As such work is carried out by a number of
geneticists in five collaborating centres in the UK, and is poorly supported by
existing tools, we wanted to see if VisGenome can facilitate it. We also wanted
to gather additional feedback which would guide the development of VG. We
compared Ens and VG, as Ens was the closest match to user requirements.
Although the tools offer similar functions, Ens shows more data types than VG,
as VG does not show sequence level data (view F in Figure 1) or gene structure
(view E). VG was under our control, which allowed us to add private user data
and make the study more realistic. Incorporating private data in Ensembl was
not desirable, because of privacy concerns.

Participants. We first carried out a pilot experiment with two subjects from
the Bioinformatics Research Centre (BRC) and five from the Western Infirmary
(WI) in Glasgow. Finally, in the experiment we had 15 participants from the
WI and the BRC. Six of them use Ens often (Ens Experts: Ex). Nine of them
use different tools, such as BugView [20], UCSC GenomeBrowser [19] or AtIDB
[23], or were from BRC and do not use genome browsers but know them from
presentations (NonExperts: NEx). Three of the participants (Ex) previously took
part in a one day Ens course.

Methods. None of the biologists have used VG before the experiment. We gave
a short presentation of VG to all subjects. Several researchers asked us to remind
them first how Ens works and where to find information (three participants -
NEx). We gave them a short introduction to Ens. Before the experiment, we
offered the subjects the opportunity to carry out an experimental task in VG
(for NEx also in Ens). We did not randomise task order and VG task came
first. The order in which the tools were attempted is thus a confounding factor;
although a positive effect on the performance for the second attempted tool
(Ens) is the most likely consequence of this, Ens performance was not better
than VG.

Prior to the study, two WI subjects had asked to see their experimental data.
To that end, we created one version of VG for the majority of participants and
two specific versions with private data. In those versions, micro array probes
were coloured in both Single and Comparative Representations, see Figure 3.
The aim was to receive more feedback from those subjects.

The experiment was divided into two parts (Ens and VG). We explained to
the participants what we understand by Single and Comparative Representation
and that VG offers Single and Comparative Representations, but in Ens the sub-
jects have to decide if they would like to use MultiContigView or SyntenyView
as Comparative Representation, and ContigView or any other Views as Single
Representation. Some of the participants asked us if they can use BioMart [1]
or RGD [24] (2 users) during the execution of Ens task. They could use all tools
available from Ens pages. During the experiment the participants could give up
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Fig. 3. VisGenome Single Representation for rat chr. 2. From left to right: chromosome
overview, Affymetrix probes, genes, eQTLs and pQTLs [12], and Affymetrix probes
from a user’s experiment.

if they thought that it was not possible to complete the task. The majority of
the subjects attempted the tasks and only one person gave up and abandoned
tasks T2 and T3, see below.

Search Tasks. Rather than choose our own tasks, which might have created
a bias in favour of VG, we asked our biological collaborators to recommend
some common search tasks. The experiment was designed to model real-life data
use, and follow the pattern of an ‘ecological study’ under real work constraints.
This precluded the use of a fully controlled experiment methodology. The users
defined three tasks, as follows.

T1 Single Representation. Choose one of the rat, mouse or human chromosomes.
Mark the whole chromosome and show all available data. Then choose the
region between 100bp and 10,000,000bp and note the name of the first gene
and the last Affymetrix probe inside the region.

T2 Comparative Representation. Choose rat chr. 18 and human chr. 5. Zoom
in and out to find any homologies between genes. Then choose one of the
homologies and read out the names of the homologous genes.

T3 Single Representation. Choose one of the rat chromosomes. Find the longest
QTL. Then zoom on it and write down the names of the genes which are
the closest to the beginning and the end of the QTL.

We captured screen usage as videos, recorded the time used for each task in
minutes (STi, search time), and counted the number of mouse clicks (NoMc)
for all tasks in VG and Ens. On finishing the tasks, the subjects filled in a
questionnaire and participated in an interview.

5 Experimental Results

The results are quite surprising. The researchers who use Ens frequently are
often unsuccessful in task execution. The experts encounter no problems in their
everyday work which focuses on a chromosome fragment. However, when they
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Fig. 4. Percentage of subjects (out of 15) who completed each task

examine similar data in a different part of the chromosome, they encounter
problems. We also found that some of the zooming mechanisms in VG were hard
to use and that the subjects prefer mouse clicking to dragging. The researchers
want to see large amounts of data, but when they are looking for a particular
object, they prefer to see only a small part of the data under investigation.

Accuracy and Task Completion. Figure 4 shows that T2, the only task
involving comparative genome representation, was more successful with VG
(100%) than with Ens (60%, 9 subjects). In T3 53% of attempts were suc-
cessful in VG (8 subjects), while in Ens the success rate was 0. In T1 we note
20% success rate in VG and 0% in Ens. Using the two-sided sign test (where
0=both/neither successful; 1=VG success but Ens not; 1=Ens success but VG
not) as an alternative to McNemar’s test [3] the success rate for VG was sig-
nificantly greater for both T2 (P=0.0313) and T3 (P=0.0078), but not for T1
(P=0.25). The null hypothesis for these tests was that the proportion of successes
was the same for both VG and Ens, and the alternative was that they were not.
Completion rates were higher in VG than in Ens for all tasks, particularly for
T2 and T3. This may be due to the fact that Ens is a much richer interface,
with many more options and controls and represents more data. Possibly, the
subjects were not able to find out how to generate comparative genome views,
or were getting lost while learning to use the system.

Time to finish. Time was measured in minutes. The biologists who completed
the tasks had mean of T1=5.69’ (StDev=1.39’), T2=3.58’ (StDev=1.17’), and
T3=5.29’ (StDev=0.97’) in VG and mean T2=2.83’ (StDev=1.76’) in Ens. As
no one completed T1 and T3 in Ens, statistics were calculated only for T2. In
T2 in Ens and VG 9 researchers correctly completed both tasks. As the dif-
ferences in times were not normally distributed, the Wilcoxon signed rank test
was used (P=0.554). We realised that Ex used both tools differently than NEx.
Ex usually wanted to see more information, got interested in the data, while
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NEx subjects just wanted to complete the task. Ex tried to find and show all
possible answers they knew, and explore while doing the task. If there were sev-
eral ways of doing the tasks in Ens they wanted to show all the solutions. In
T2, for example, it was enough to show two genes in VG and Ens, and most
NEx did that and finished quickly. Most Ex performed T2 and then explored
MultiContigView to see more information about homologous genes, which took
more time. Users behaved similarly in T3, however nobody succeeded in Ens.
NEx showed Affymetrix probes in ContigView, while Ex used FeatureView and
looked at the detail. There were also slight differences in server response times
for Ens which might have influenced the speed of data analysis. Overall, in T2
there was little difference in task execution time between Ens and VG.

Mouse Clicks. Those who completed the tasks had the means of T1=53
(StDev=9.54), T2=51.07 (StDev=26.65), and T3=74.38 (StDev=13.38) NoMC
in VG, and the mean for T2=23 (StDev=18.93) NoMC in Ens. Only T2 mouse
clicks were analysed, due to non-completion in Ens for T1 and T3. 9 subjects
completed T2 with both VG and Ens, and despite the mean number of clicks
being larger in VG than in Ens, there was no significant difference in NoMC,
possibly due to the small sample size. One Ex had a very large NoMC (138)
for VG, and only 19 for Ens. This shows that mouse manipulation in VG needs
getting used to, as panning and zooming require keeping the left/right mouse
button down and moving the mouse at the same time left/right or up/down, and
the left/right movement is not offered by many similar applications where click-
ing on zoom bars is used instead, and smooth zooming is not widely used. This
is a potential problem, however, most subjects learned how to use the mouse
quickly. On the other hand, Ex often clicked to see additional information and
some of NEx clicked because they wanted to find the solution and they were not
sure where they had to look for it. This contributed to a large NoMC in some
Ex as well as NEx.

6 Discussion

6.1 User Study

In T1 we saw that the participants were looking for Affymetrix probes and
couldn’t find them. However, the main cause of failure in T1 was that the sub-
jects made mistakes, e.g. typed 1 Mbp instead of 10 Mbp. In VG the subjects
frequently forgot to mark the whole chromosome to show all available data or
marked half of the chromosome instead of the whole. In Ens a number of users
entered the coordinates and marked ‘Region’ instead of ‘Base pair’, and some
did not use the overview offered by Ens but tried to mark the whole chromosome
in ContigView. This usually crashed the web browser and required a restart.

T3 required showing the longest QTL. In a chromosome with many small
QTLs, the subjects could not decide which QTL to choose (four subjects). We
suggested that they carry out the task for any of the QTLs. The same solution
was suggested where several long QTLs appeared to be of similar length. 8



88 J. Jakubowska et al.

Fig. 5. Percentage of subjects (out of 15) who finished each task with errors

researchers were successful in T3 in VG. The most frequent mistake in the
unsuccessful attempts in VG was choosing a complex of QTLs instead of one
QTL. In Ens the subjects usually attempted to mark the entire chromosome,
and only one person succeeded without crashing the browser. Some subjects tried
viewing the chromosome in units of one 1 Mbp but gave up after recognising
that this would take too long. One user tried to use BioMart and RGD, but this
did not help. Most subjects did not realise that the view shown in Ens is not the
whole chromosome but a small part of it. Several subjects chose a chromosome,
clicked on it, viewed ContigView, looked down the screen to find QTLs and saw
that they were all longer than the area shown in the browser, and did not know
what to do to see the entire length of the QTLs.

When we analyse both correct and partially erroneous task completions, see
Figure 5, we see a different view of the experiment. 11 users finished T1 and
T2 in Ens and 5 users finished T3 in Ens. Similarly, for VG the completion rate
improved. T1 was completed by 12 users and T3 by 10.

6.2 Lessons Learnt

Although the use of zooming helped users, and new visualisation features re-
quired some learning, we suggest that the experiment highlights another sig-
nificant issue to be addressed in future development: high error rates in data
selection and query specification. The benefits of solving this problem may well
outweigh those arising from new variations on and easy learning of features such
as zooming and panning. Error rates are possibly due to suboptimal menus and
selection boxes, or to the fact that users find it easier to use simple interfaces
with fewer options, see [5], than complex ones which offer more functionality.

We note user training is required for both VG and Ens. Although zooming
and panning by mouse manipulation was classified as something very intuitive
and natural, at the beginning of the VG experiment most subjects were confused
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and disappointed that they had to remember which button and which direction
to use to zoom or pan. A possible solution to this problem would be to offer
visual shortcuts to zooming, as seen in maps.google.com. While some users sug-
gested that new visualisation techniques could be bad because biologists are not
familiar with them, some said that acceptance depends on the implementation.
A small number of subjects (2) suggested zooming with buttons instead of mouse
manipulation and were disappointed because of the lack of scrolling.

VG supports local as well as cross-species QTL and gene expression analysis.
This additional functionality offered by our application is essential to the work
of our target users. In this context the use of colour will require further research,
but our guess is that, based on our questionnaire, see [16], Ens offers too many
colours, which is confusing to the user and makes the display hard to read. A
possible extension of this work would examine the use of various layout and
colouring options to arrive at solutions suitable for most users and giving the
user some flexibility in layout, colour and interactivity adjustment.

Web interaction paradigms supported by AJAX (Asynchronous JavaScript
and XML) are an alternative way of adding interactivity to a web-based genome
map. These technologies are orthogonal to the issues of usability. We envisage
that based on this study and further user studies we are planning, one could
develop improved AJAX-based genome browsers which offer more interactivity
and are more appropriate in the context of comparative genomics.

We confirm the findings reported in [5] about the high cost of usability ex-
periments. The ethics application for this experiment was placed in May 2006.
The user study was then refined in the summer of 2006 and conducted between
August and start of December 2006. Some of the intervening time was spent on
data integration tasks and some on related reading. Data analysis and writing
up of the results (from screenshot recordings and questionnnaires) took about
three months. This represents around 10 months of elapsed time for one PhD
student, and about 1-3 hours per user. We believe the time was well spent.

7 Conclusions

We presented a user study comparing VisGenome and Ensembl in the context
of comparative genome analysis. We found that in our experimental setup which
targets the analysis of QTLs, synteny and gene expression, the subjects were
more successful in using VG than in Ens. VG was preferable in some aspects,
as it had a simpler interface, showed less data and had fewer controls. All par-
ticipants liked techniques they know, such as scrolling and panning, and needed
time to adapt to new solutions, such as mouse driven panning and zooming.
The study shows that there is still large scope for the application of known
visualisation techniques to bioinformatics data. Useful solutions, like semantic
zooming offered by maps.google.com, could be very useful and should be tested
in biomedical work. In particular, this study shows the great potential for us-
ability improvement via a user study.
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During the study a list of user suggestions and requests was gathered and
ongoing work is addressing those, as well as exploring ways to reduce error
rates in data selection and query specification. The next version of VG will be
evaluated differently. We will allow the users to see their data and navigate
through it. This time, instead of specified tasks, the users will use VG in a real
work scenario. We will observe how the subjects interact with VG and what
kind of tools and information they use. VisGenome is now usable and can be
downloaded from www.dcs.gla.ac.uk/∼asia/VisGenome. Full details of our
experiment can be found in [16].
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Deduplicating Proteins
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Abstract. An important prerequisite to successfully integrating protein
data is detecting duplicate records spread across different databases. In
this paper, we describe a new framework for protein entity resolution,
called PERF, which deduplicates protein mentions using a wide range of
protein attributes. A mention refers to any recorded information about a
protein, whether it is derived from a database, a high-throughput study,
or literature text mining, among others. PERF can be easily extended to
deduplicate protein-protein interactions (PPIs) as well. This framework
translates mentions into instances of a reference schema to facilitate
mention comparisons. PERF also uses “virtual attribute dependencies”
to “enhance” mentions with additional attribute values. PERF computes
a likelihood measure based upon the textual value similarity of mention
attributes. A prototype implementation of the framework was tested, and
these tests indicate that PERF can clearly separate duplicate mentions
from non-duplicate mentions.

1 Introduction

Elucidating and cataloguing protein-protein interactions (PPIs) are important to
fully understand the function and purpose of each protein in an organism’s pro-
teome. Many PPIs are now available from numerous publicly accessible databases
to facilitate further research involving these interactions. Unfortunately, there are
very few overlapping records between these databases [1]. Integration of this in-
formation into a single database system, however, is not straightforward, as there
are many challenges to overcome in a data integration effort of this magnitude.

One particularly important data integration issue is determining which records
from separate databases refer to the same actual protein [1]. This step, which
is often referred to as “entity resolution” or “deduplication”, is critical to en-
suring that no duplicate records are present in the integrated database system.
Duplicate records could be mistaken for distinct PPIs, and since these PPIs are
frequently used in other analyses, quick and accurate deduplication is impor-
tant to ensuring the integrity of these analyses. However, each individual PPI
database usually uses its own proprietary identifier system, and therefore it is
impossible to identify duplicate records by comparing identifiers. Furthermore,
certain identifiers may not actually uniquely identify a single protein, but instead
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refer to a class of proteins [2]. Therefore, a reliable identifier with a one-to-one
correspondence to proteins is necessary in order to satisfy the goals of protein
entity resolution.

In this paper, we propose a new framework for performing entity resolution on
protein mentions. A mention refers to any recorded information about a protein,
whether it is derived from a database, a high-throughput study, or a scientific
journal, among others. PPIs can be considered pairs of protein mentions that
interact with each other. A framework for deduplicating protein mentions can
be easily applied to deduplicating PPIs. Given two PPIs A-B and C-D, where
A-B designates an interaction between protein mentions A and B, if A-B and
C-D refer to the same PPI, then either the pair (A,C) and the pair (B,D) are
the same proteins, or (A,D) and (B,C) are the same proteins.

A reliable identifier with a one-to-one correspondence to the proteins of a
given species is the Amino Acid (AA) Sequence, since the primary sequence di-
rectly determines the structure and function of each protein [3]. Therefore, if a
protein mention provides both an AA Sequence and a “Source Organism”, the
one protein that this mention refers to can be unambiguously identified. Source
Organism is required since distinct proteins in different species can share the
same AA Sequence. Since the similarity of the AA Sequence and the Source
Organism is generally considered to be the strongest evidence that two men-
tions refer to the same protein, existing protein deduplication systems perform
deduplications solely on the basis of AA Sequence and Source Organism identity
[1, 2, 4]. However, for most mentions, one or both of these attributes may be
missing, and therefore an alternate means of deduplication is required. The new
framework proposed here, the Protein Entity Resolution Framework (PERF),
takes two protein mentions as input, attempts to deduce other attributes for
these mentions, and makes use of these attributes to determine the likelihood
that the two given mentions refer to the same actual protein.

PERF consists of three main components:

1. XML Reference Schema: The PERF framework is based on an XML
schema that provides a comprehensive list of mention attributes derived
from the schemas of various popular protein databases, including NCBI,
EBI, UniProt, BIND, HPRD, MINT, MIPS, IntAct, and DIP [5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17]. This Framework Schema allows mentions to
be represented in a common format to facilitate mention comparisons.

2. Virtual Attribute Dependencies (VADs): Special rules for identify-
ing additional mention attributes, called “virtual attribute dependencies”
(VADs), were defined for the purpose of finding as much information as
possible on each mention to use for the actual deduplication process.

3. Framework Deduplication Procedure: PERF supports a computational
procedure that computes the likelihood that two given protein mentions refer
to the same actual protein based upon the attribute values available from
those mentions.
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PERF is a modular framework that currently supports the following functions:

– resolve(m): This function serves as the basis for all the other functions. Given
a single ambiguous mention, this function will resolve the protein that this
mention refers to, if possible.

– deduplicate(m1, m2): This function uses PERF to deduplicate two protein
mentions. PERFs calculations should be able to identify true duplicate pairs
from a set of mention pairs.

– deduplicate-network(n): This function uses PERF to deduplicate a PPI net-
work n, i.e. identify duplicate proteins and interactions in the network. This
is essentially the application of deduplicate(m1, m2) to each pair of mentions
in the network to consolidate duplicate proteins and their interactions to
produce a non-redundant network.

– compare-networks(n1, n2): This function takes as input two PPI networks
n1 and n2, both of which are internally deduplicated using deduplicate-
network(n). This function also finds proteins in n1 and n2 that are the same,
and thus compare-networks(n1, n2) can be used to determine the overlap be-
tween n1 and n2.

We implemented a prototype version of PERF that supports resolve(m) and
deduplicate(m1, m2). We tested PERFs ability to fulfill the requirements of these
functions; the test results are discussed in this paper. Although all four functions
have been defined, the last two functions, deduplicate-network(n) and compare-
networks(n1, n2), will be implemented for a future version of PERF.

The rest of this paper is organized as follows. Section 2 provides background
information on protein and PPI database systems. Work previously done to
tackle the PPI entity resolution problem is also discussed. Section 3 describes
PERFs components in detail. Section 4 describes the testing of PERFs ability
to fulfill the requirements of resolve(m) and deduplicate(m1, m2), and discusses
the test results. Section 5 makes some concluding remarks and discusses future
directions for this research.

2 Background

Many protein databases have been established to catalog all identified proteins
[18]. Each of these databases relies on different sources for their records, and
therefore cover very different sets of proteins. Although there is some collabo-
ration between a few of these databases to keep each others records up-to-date,
and to cross-reference corresponding records [19], most databases do not make it
easy to find corresponding records in other databases. Given the exponential in-
crease in protein data fueled by new high-throughput analyses, reliable, efficient,
and automatic deduplication and integration of this data is urgently needed to
properly manage this data and make sense of it.

PERF, as discussed earlier, is also applicable to the deduplication of PPIs.
Many high-throughput PPI datasets have been produced in the last few years
thanks to recent advances in laboratory technology [20]. These datasets are com-
piled from the results of high-throughput analyses. Although these analyses can
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process thousands of interactions in a single run, they are also prone to particu-
larly high false positive rates (i.e. a large number of the published interactions do
not actually exist) [20]. Higher confidence can be placed in interactions that are
reported in several datasets, as this represents verification of these interactions
in multiple, independent experiments. Therefore, reduction of false positives pro-
vides additional motivation to find duplicates and integrate high-throughput PPI
datasets.

Existing protein entity resolution systems include the International Protein
Index (IPI) [1], and systems like BIOZON [2] and the Agile Protein Interaction
DataAnalyzer (APID) [4] for PPI deduplication. Each of these systems, however,
only deduplicate proteins and PPIs on the basis of amino acid sequence simi-
larity. PERF, however, can also make use of other available protein attributes,
in addition to amino acid sequence similarity, making PERF more versatile in
deduplicating protein mentions.

3 Protein Entity Resolution Framework (PERF)

3.1 Mentions

PERFs inputs are protein mentions. Typically, we refer to actual proteins with
the values of their attributes, such as “Name”. Mentions here are collections
of these values drawn from a source or sources with information pertaining to
a given protein. Some sources, such as database records, contain (particularly
extensive) information on a given protein. Proteins may also be discussed in
certain papers, either individually or within the context of a particular group
of proteins. Additionally, protein information can be drawn from the data of
high-throughput elucidation experiments. Each of these sources may provide
different amounts and/or different types of information, but information from
each of these sources is considered a mention for PERFs purposes.

Formally, we define a mention as a list of attribute-value pairs following a
nested model where attributes can contain, nested within their values, “sub-
attributes” or a set of values that allow lists of attributes/values to be represented
within a single attribute. This model allows several aspects of a single attribute
to be represented in a mention as well. The general form of a mention is described
below:

m.name[: m.db name] := {
[p1

1 := v1
1 ]\;

[p1
2 := v1

2\; v2
2\; v3

2 ]\;
[p1

3 := v1
3\; [p2

3 := v1
3−2]\; [p3

3 := v1
3−3\; v2

3−3\; [p4
3 := v1

3−4]]]\;
...

[p1
n := v1

n . . .]}
Each mention is specified by a name, the name of the database it was derived

from (if any), and a list of attributes. Each attribute can be associated with a
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single value (e.g. p1
1), a set of values (e.g. p1

2), or a set of sub-attributes (e.g. p1
3).

The following mention, which describes the CCNB1 protein from the CellMap
database [21], contains examples of all three types of attributes described above.

Example 1. A complete protein mention using the PERF input mention format.

ccnb1:CellMap:={
[Name:=CCNB1]\;
[Synonyms:=Cyclin B1\;G2/mitotic specific cyclin B1\;CCNB1\;CCNB]\;
[External Links:=[PubMed:=1387877]\;[OMIM:=123836]]\;
[Complex(s):=CDC2]\;
[Physical Interaction(s):=CDC2\;PTCH]}

3.2 The Framework Schema

A mention may or may not point to a single protein entity. However, mentions
often contain attributes that can help us retrieve additional attributes that are
better suited for uniquely resolving that single protein. The Framework Schema
was designed to represent these attributes in a standardized format. Therefore,
given an input mention, we first standardize it by mapping it to the Framework
Schema. Then, we expand the coverage of each mention with “virtual attribute
dependencies” (section 3.3), and finally decide if the mention points to a unique
protein (i.e. it is unambiguous) or a group of proteins (i.e. it is ambiguous).

The Framework Schema is a predefined XML-based schema that can accom-
modate many common kinds of protein information. This schema allows several
instances of a mention to be represented in a single Framework Schema record.
This is accomplished by defining the top-level element to be a “Protein Set”
that can contain multiple “Protein” objects. Initially, each Framework Schema
record derived from a single mention contains only one “Protein”. However, ad-
ditional “Proteins” can be added through the use of “1-to-N VADs” described
in section 3.3.

Each attribute in the Framework Schema has a distinct usefulness for the
entity resolution of protein mentions, and therefore each attribute has been
assigned a “strength”. This concept resembles the selectivity of attributes in
relational databases: in PERF, an attribute with strength I is a key attribute,
and therefore it uniquely identifies a single protein. The less useful an attribute
is for narrowing down the number of possible proteins to which a mention may
refer, the higher its strength. The strengths of select Framework Schema at-
tributes are provided in Table 1, along with an attribute description and the
domain of accepted values for that attribute. Attribute strengths were derived
from experiments with database queries to determine the cardinality of the re-
sult set produced when each attribute is used as the query attribute (databases
appropriate for each attribute were used for these queries). Certain attribute
combinations may be more useful for unique protein identification than the indi-
vidual attributes considered in isolation; these attribute combinations are listed
in Table 2. The full list of Framework Schema attributes is available in [22].
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Table 1. A list of select attributes defined under the Framework Schema, along with
their strengths, and the domains of the values accepted for each attribute

Attribute Description Strength Domain
Name(s) Name(s) assigned to the given

protein.
III-IV Text string corresponding to

one of given proteins name(s).
One tag used for each distinct
name.

Keywords Short, descriptive words as-
signed to given protein.

IV Terms describing key character-
istics of given protein.

Database
cross-
references

References to database records
that describe the given protein,
or some characteristic of that
protein.

II Composite value with two fields:
Name: Name of the referenced
database. ID : Unique identi-
fier of referred record in named
database.

Amino acid
(protein)
sequence

The given protein’s sequence of
amino acids produced by tran-
scription and translation from
the corresponding gene.

II String of amino acid one-letter
codes

Source or-
ganism

The organism from which the
given protein was derived.

IV The “[genus] [species]” designa-
tion of the source organism

Free text
description

Any freeform description of the
given protein.

IV Any text

NCBI
Gene ID

NCBI Gene ID identifying exact
locus of gene from which given
protein was transcribed.

II A valid NCBI Gene ID

Table 2. A list of the attribute combinations that have a better strength than their
separate, individual attributes, and hence have been assigned a lower number as given
below

Attribute Combination Strength
(AA Sequence, Source Organism) I

(NT Sequence, Source Organism) II

(NCBI Gene ID, Source Organism) II

3.3 Virtual Attribute Dependencies (VADs)

The concept of “virtual attribute dependencies” resembles that of “functional
dependencies” (FDs) in relational databases [23]. In the context of PERF, we
define “virtual attribute dependencies” as rules for determining additional at-
tribute values from an external biological database, given attribute values pro-
vided with the original mention. For example, if a RefSeq identifier is available in
a mention m, then the amino acid sequence can be retrieved from the protein’s
RefSeq record and added to m. These newly-acquired attributes help narrow
down the size of the protein classes implied by ambiguous mentions , and there-
fore the new attributes have a better strength compared to the attributes they
were derived from. Formally, a virtual attribute dependency is a triple (P, Q)
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→ T , where P refers to the set of prerequisite attributes, Q is a query or web
service, and T refers to the set of resultant attributes. Given a set of values for
the attributes in P , Q is evaluated to produce values for the attributes in T .
Therefore, VADs define a general mechanism that is applied here to the specific
problem of extending the information of protein mentions.

The execution of a VAD for a particular set of values for P may produce one
set of values for T , or may produce many sets of values for T . Therefore, there
are two types of VADs: 1-to-1 VADs and 1-to-N VADs. For the 1-to-1 VADs, the
values of T are added to the original mention by instantiating the appropriate
attributes with those values. For the 1-to-N VADs, however, each resultant value
set represents one possible configuration of the original mention. Therefore, for
each resultant value set, a new Protein object must be created in the original
mention that extends the original Protein object with the attributes and values
from that set. Thus, the mention is extended to cover all possible proteins that
the original mention refers to in as much detail as possible.

VADs are designed to extend/improve an instantiation of the Framework
Schema. Table 3 illustrates some example VADs. These dependencies are pro-
vided in the form (P, Q) → T described above. Starting attribute strength (Start
str.) indicates the strength of the prerequisite attributes, while resultant at-
tribute strength (Res. str.) indicates the strength of the resultant attributes.
The notes column describes the rationale behind each dependency, and the last
column presents examples of these dependencies with actual values. Note that
this list is extensible and customizable, and can be updated to meet the dedu-
plication needs of particular data domains.

3.4 Framework Deduplication Procedure

There are three major steps to this procedure, each of which will be discussed
below.

3.4.1 Mapping Protein Mentions to the Framework Schema
Recall that the Framework Schema uses attributes names that are not the same
as those of the input mentions but are semantically equivalent to the original
mention attributes. A mapping procedure is therefore needed for finding the
Schema attributes that correspond to a given mention’s attributes.

Let m be a mention and R be the Framework Schema. Also, let S(m) be the
schema of m. We assume that, for each attribute ai in S(m), there is exactly
one matching attribute rj in R s.t. ai and rj describe the same thing. The
set of these attribute pairs for each attribute ai in S(m) is called the correct
mapping. There are two ways the Framework Deduplication Procedure can
infer the correct mapping between S(m) and R, depending on whether or not
S(m) was derived from an established database schema or not. The first option
involves lexical similarity comparisons between the attributes of S(m) and the
attributes of R. The second option involves using a lookup table to directly
translate an attribute ai in S(m) into an attribute rj in R. This works if S(m) is
derived from a previously established schema that has been manually matched
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with the Framework Schema attributes in a one-to-one mapping. The complete
description of the algorithm for inferring the correct mapping between S(m) and
R is available in [22].

3.4.2 Addition of Attributes to Mentions Using Virtual Attribute
Dependencies

After the translation of each mention to a Framework Record F , the virtual
attribute dependencies (VADs) in Table 3 will be used to collect additional
attributes for each mention. Each VAD is applied sequentially, and at each step
i, a Framework Record Fi is rewritten to Fi+1. For each VAD Di executed
on a mention m, the Framework Deduplication Procedure will check if all the
prerequisite attributes Pi are defined in m, and if at least one of the resultant
attributes Ti is not defined in m. If both of these conditions are true, then the
query Qi will be executed to produce the resultant attributes Ti to add to m.
Otherwise, the next VAD will be considered, if there are any remaining VADs
to consider.

3.4.3 Pairwise Matchings of Mentions
In this step of the procedure, comparisons are made between the two input
mentions to determine the likelihood that they refer to the same protein. This

Table 3. A list of some of the virtual attribute dependencies (VADs) used in PERF

# Dependency Start
str.

Res.
str.

Notes Example

1 {(Database
reference), Cor-
responding
database} →
(AA Sequence,
Source Organ-
ism)

II I All protein database records
contain information on the pro-
teins amino acid sequence, and
its source organism.

{(RefSeq:=
NP 660312), Ref-
Seq} → (mmrrtlenrn
. . . , Homo sapiens)

2 {(NT Sequence,
Source Organ-
ism), translation
service} → (AA
Sequence)

II I The nucleotide sequence can be
translated into an amino acid
sequence.

{(ACGAACAGGC
. . . , Homo sapiens),
GlimmerHMM} →
(malrvtrnsk . . . )

3 {(AA Sequence),
NCBI BLASTP}
� (Source Or-
ganism) (a “�”
means the query
may or may not
produce resul-
tant attribute
values, see Notes
column)

IV I If an amino acid sequence is
available, but no source organ-
ism is available, the sequence
can be BLASTed against a pro-
tein database, and if a strong hit
is found, and the E-value of the
best hit from a different organ-
ism is lower by a threshold T
than the top hit, then we can
deduce the Source Organism of
the uniquely identified protein
referenced in the given mention.

{(malrvtrnsk ...),
NCBI BLASTP} →
(Homo sapiens)
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step consists of three algorithms. They are: A) Ambiguity Determination,
B) Unambiguous Deduplication, and C) Ambiguous Deduplication. Each of these
will be discussed below.

A) Ambiguity Determination: Like most existing protein deduplication frame-
works, we assume that AA Sequence and Source Organism are the most reliable
means of identifying individual proteins [1, 2, 4]. Therefore, unambiguous men-
tions have both an AA Sequence and a Source Organism defined, and ambiguous
mentions have one or both of these attributes undefined. If both mentions are
unambiguous, then PERF executes an Unambiguous Deduplication (described
below) that directly compares the two individual proteins, and precisely deter-
mines whether or not these proteins are the same. If one or both mentions are
ambiguous, then there is some level of uncertainty over the protein to which
one or both mentions refer. Under these circumstances, PERF will execute an
Ambiguous Deduplication (described below) that computes a likelihood measure
indicating the probability that the two mentions refer to the same protein.

B) Unambiguous Deduplication: In an Unambiguous Deduplication, the AA
Sequence and Source Organism will be directly compared to determine if the
two mentions describe the same protein. The sequences will be compared with
the BLAST2SEQ program [24], and the organisms will be compared using the
Damerau-Levenshtein (DL) string edit distance [25, 26] to determine how close
they are to each other. The use of a string edit distance accommodates some
tolerance for simple spelling or transcriptional errors. The results of these com-
parisons will be compared to cutoffs to determine if the two input mentions refer
to the same protein. In PERFs current implementation, the BLAST2SEQ cutoff
is 90% sequence identity, and the DL cutoff is 5.

C) Ambiguous Deduplication: Suppose that PERF is attempting to deduplicate
two input mentions m1 and m2. Let v(ai, m1) be the set of values of attribute ai

in mention m1, and let v(ai, m2) be the set of values of attribute ai in mention
m2. For each attribute ai in S(m1) ∩ S(m2), and any pair of mentions m1 and
m2, there is a maximum number of ai values that m1 and m2 can have in com-
mon. This number is the theoretical maximum similarity score (M(ai, m1, m2)),
and is equal to min{|v(ai, m1)|,|v(ai, m2)|}. This is the maximum number of at-
tribute ai values that can match between m1 and m2. Attributes that are defined
in one mention but are missing from the other are not factored into this score,
since mentions may be derived from sources with varying attribute coverage.

The raw similarity score S(ai, m1, m2) is the actual number of ai values that
m1 and m2 have in common. This score is determined for each attribute ai

that has a nonzero theoretical maximum similarity score M(ai, m1, m2) on m1
and m2. After the calculation of the theoretical maximum similarity score and
the raw similarity score between m1 and m2 for each ai, the sum of the raw
similarity scores over all attributes ai between m1 and m2 is divided by the sum
of the theoretical maximum similarity scores over all attributes ai between m1
and m2 to produce a final mention percent similarity score P (m1, m2):
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P (m1, m2) =

∑

ai

S(ai, m1, m2)

∑

ai

M(ai, m1, m2)
for all ai in S(m1) ∩ S(m2) (1)

P (m1, m2) will be equal to 1 if all attribute values were perfect matches, and
0 if there were no matches. In general, 0 ≤ P (m1, m2) ≤ 1.

So far, we have assumed that all attributes are equally important to correctly
deduplicating two mentions. However, some might be more important than oth-
ers. Therefore, we introduce an attribute weight factor. The weighted variation of
the mention percent similarity score between m1 and m2 will now be discussed.

Let a be the weight factor of strength I attributes, b be the weight factor of
strength II attributes, c be the weight factor of strength III attributes, and d
be the weight factor of strength IV attributes. In the frameworks current form,
these factors are set to the following values: a = 1000, b = 100, c = 10, and d = 1.
The weighted mention percent similarity score between m1 and m2 W (m1, m2) is
similar to the mention percent similarity score between m1 and m2 P (m1, m2),
with the exception that the weighted raw similarity scores and the weighted
theoretical maximum scores are used in the summations in the numerator and
denominator, respectively. (w(ai) represents the weight factor of attribute ai)

W (m1, m2) =

∑

ai

w(ai)S(ai, m1, m2)

∑

ai

w(ai)M(ai, m1, m2)
for all ai in S(m1) ∩ S(m2) (2)

In this algorithm, both the mention percent similarity score P (m1, m2) and
the weighted mention percent similarity score W (m1, m2) are computed.

4 PERF Implementation and Evaluation

4.1 Evaluation of Mention Resolution

The International Protein Index (IPI) maintains a curated database of cross-
references between a wide range of other databases, including Ensembl, RefSeq,
and TAIR [1]. This index can be used to identify pairs of duplicate records
across different databases. Using IPI’s index, five UniProt/NCBI pairs of dupli-
cate records were arbitrarily chosen. A set of five non-duplicate pairs was also
produced by taking each of the UniProt records and randomly pairing them with
NCBI records (not shown). VAD #3, which defines a rule for deriving the Source
Organism of a mention by conducting an NCBI BLAST of the mention’s AA
Sequence (section 3.3, Table 3), was tested by removing the Source Organism
from each of the UniProt mentions. PERF was tested on these data to determine
whether or not PERF can identify the correct Source Organism, and whether or
not PERF can correctly identify which pairs were actual duplicates and which
were non-duplicates.
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Successful invocation of VAD #3 correctly identified the Source Organism
for each of the UniProt mentions. The results of the subsequent unambiguous
deduplications demonstrate that all the actual duplicates did exhibit a sequence
identity of 90% or higher, while the non-duplicates exhibited significantly worse
results (data not shown). Additionally, the Source Organism DL (Damerau-
Levenshtein) Distance for each pair is zero, indicating that each pair’s Source
Organisms were perfectly identical. Therefore, PERF correctly classified each
pair in the test data, and was able to fully resolve each of the UniProt mentions.

4.2 Evaluation of Duplicate Resolution

The International Protein Index (IPI) was used to identify pairs of duplicate
records across different databases for this evaluation. The evaluation of PERF’s
effectiveness at deduplicating mention pairs involved mentions derived from
three of the databases for which IPI maintains cross-references. These mention
pairs are divided into two groups representing the databases from which these
mentions were drawn:

1. CellMap/NCBI: Pairs in which one mention was drawn from the Memorial
Sloan-Kettering Cancer Center’s CellMap database, and one from NCBI, and

2. Ensembl/NCBI: Pairs in which one mention was drawn from Ensembl,
and one from NCBI

Each of these groups contains 20 arbitrarily chosen pairs of duplicate records.
These mentions comprise the body of test cases (experiments) that PERF should
correctly identify as duplicates. Mention pairs that do not refer to the same pro-
tein (i.e. non-duplicates) were derived by randomly pairing the NCBI mentions
in each group to the mentions from the other database in the same group. (e.g.
in group (i), each NCBI mention was randomly paired with a CellMap men-
tion from the same group) Therefore, each group consists of 20 examples of
mention pairs that refer to the same protein, and a corresponding number of
examples of mention pairs that do not refer to the same protein. Each pair was
labelled with a unique identifier indicating which group it belongs to, whether it
is a duplicate or non-duplicate pair, and its unique number within that group’s
duplicate/non-duplicate pairs. For example, the pair II-ND-3 belongs to group II,
is a non-duplicate pair, and is the third pair in the set of group II non-duplicates.
All pairs from these groups were scored by the PERF Attribute Value Compari-
son to determine if the W (m1, m2) score could be used to separate the duplicate
pairs from the non-duplicate pairs.

Fig. 1 presents the mention percent similarity score P (m1, m2) and weighted
mention percent similarity score W (m1, m2) between m1 and m2 for each of
the duplicate mention pairs and non-duplicate mention pairs from group I. It is
clear that under the current weighting scheme, most duplicate pairs’ scores are
increased relative to their unweighted scores, while non-duplicate pairs scores are
decreased relative to their unweighted scores. For these mentions, the weighting
scheme slightly increased the scores of the duplicate pairs, with two exceptions.
First, pair I-D-8’s weighted and unweighted scores are the same. The second
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Fig. 1. Group I Results

exception is pair I-D-15, where the weighted score actually decreased relative
to the unweighted score. Despite these aberrations, the scores of the duplicates
are significantly higher than those of the non-duplicates. According to Fig. 1,
all non-duplicate pairs’ scores were drastically reduced by the weighting scheme.
Therefore, overall, these weights are effective for widening the gap between actual
duplicates and non-duplicates, reducing the amount of possible overlap between
these two classes. Reducing this overlap is important as it reduces the number
of pairs that could be mistakenly classified.

It was discovered that most of the similar attributes between duplicate men-
tion pairs from this test group (i.e. between CellMap and NCBI mentions)
were between Name attributes. Therefore, it appears that CellMap and NCBI
use the same naming conventions, and Name similarity is more significant in
CellMap/NCBI comparisons as a result. Consequently, the strength of Name
attributes was increased when scoring these pairs.

The average W (m1, m2) for the duplicates was 0.497, and the average W (m1,
m2) for the non-duplicates was 0.021. Therefore, PERF was very successful at
separating true duplicates from non-duplicates. The exact score cutoff, as well
as the best weighting scheme to use to separate these two classes, would be best
determined by training PERF on a wider range of test data. Training could
also help adjust the weighting scheme so that the weighted scores of duplicates
exemplified by pairs I-D-8 and I-D-15 are increased relative to their unweighted
scores.

Fig. 2 presents the P (m1, m2) and W (m1, m2) between m1 and m2 for each
of the duplicate mention pairs and non-duplicate mention pairs from group II.
Among the duplicate pairs, six pairs did not have any common attribute values,
even though they actually are duplicates. (These are indicated with a Zero in
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Fig. 2. Group II Results

Fig. 2) These represent duplicates that are missed, underscoring the sometimes
vast differences between different databases’ coverage of protein attributes. Addi-
tional attributes, possibly from the database cross-references of these mentions,
could possibly provide attributes with similar values that PERF can identify for
the purpose of establishing that these mentions are duplicates. PERF provides
a framework where new VADs may be added to further identify new attributes.
Testing with larger amounts of data in the future would help to enhance PERF
capabilities in this respect.

Looking at the non-duplicate pairs, all pairs scored zero, ruling out the possi-
bility of mistakenly classifying a non-duplicate pair as a duplicate pair. One pair,
pair II-ND-19, was fully resolved by PERF, and therefore compared under the
Unambiguous Deduplication Procedure described in section 3.4.3. Since the AA
Sequence identity of these mentions was 24%, this pair was correctly classified
as non-duplicate.

Additionally, two of the duplicate pairs from group II (pairs II-D-1 and II-D-
5) have W (m1, m2) scores that are lower than their corresponding P (m1, m2)
scores, much like pair I-D-15. However, as with group I, these W (m1, m2) scores
are still adequate for distinguishing between duplicate and non-duplicate pairs.
Overall, the W (m1, m2) scores correspond to a roughly bimodal distribution.
The mean W (m1, m2) for the duplicates was 0.198, and the mean W (m1, m2)
for the non-duplicates was zero, indicating that duplicates and non-duplicates
are clearly separated in group II. Again, additional parameter tuning and weight
training for these types of mentions may help produce better W (m1, m2) results,
and help adjust the weighting scheme to increase the scores of pairs II-D-1 and
II-D-5. Name attributes’ strength was increased for this group as well.
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The above results show that PERF is effective in deduplicating protein men-
tions by comparing a range of attributes. It is also shown that database-specific
considerations are desirable for achieving a good bimodal distribution for the
scores of duplicate mention pairs and non-duplicate mention pairs. Mentions
from these databases could be used in the future as training data for PERF’s
attribute strengths and other database-specific parameters, allowing them to be
optimized to achieve the best possible separation between duplicates and non-
duplicates.

5 Conclusions and Future Work

In this paper, a new framework for deduplicating protein mentions was defined.
Applications of this framework, PERF, to deduplicating mention pairs and entire
networks were described. A prototype version of PERF was implemented and
tested on a small set of protein mention pairs derived from different databases
to evaluate PERF’s effectiveness at fulfilling the requirements of two of the
functions described earlier. These results indicate that PERF can be effective
for solving the entity resolution problem for protein mentions. PERF forms a
solid basis, grounded in techniques from database research, to address entity
deduplication in biological databases.

Future plans for our work include the following developments. First, addi-
tional virtual attribute dependencies (VADs) can be produced so that there
are more options available to PERF for resolving mentions to unique proteins.
Further investigation of the Framework Schema attributes, as well as query
services with which they can be used to obtain additional information, is de-
sirable. Second, testing with larger datasets would give us more insights into
increasing the effectiveness of PERF for mentions from different sources, such as
published literature and high-throughput datasets. Issues specific to particular
sources can also be investigated so that PERF can be better tuned for specific
applications.

A third area of future development would be the creation of a better, more
usable interface. Upgrading PERF to a web service will maximize its reach and
enable its use by others. Fourth, there are additional steps at the end of the
Framework Deduplication Procedure that could be implemented to streamline
the post-deduplication user workflow. PERF could, upon completion of a dedu-
plication, automatically consolidate two duplicate mentions into one, and add it
to a database that serves as a repository of deduplicated mentions. Fifth, PERF
may also have applications to the field of “data cleaning”, i.e. the identification
and correction of inaccurate records in a database [27]. Finally, implementations
for some of the Framework Deduplication Procedure’s steps could be refined to
improve PERF’s robustness and performance.

In conclusion, PERF forms a solid foundation for a framework for PPI dedu-
plication. Further development of the aforementioned features, and more testing,
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would broaden and enhance PERF’s applicability to protein and PPI dedupli-
cation problems.
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Abstract. A computational grid infrastructure for biomedical research, called 
caGrid, is under development by the National Cancer Institute (NCI) as part of 
the cancer Biomedical Informatics Grid (caBIG) Initiative. In this paper we  
present a model that enables users to query an integrated view of caBIG data 
services at a conceptual semantic level. The model is based on semCDI, a for-
mulation to generate an ontology view of caBIG semantics and pose queries 
against this view using the SPARQL query language complemented with Horn 
rules. We present here a mechanism to process these queries algebraically using 
our semQA query algebra extension for SPARQL, in order to create sub-
expressions for each data service. We then show how resulting graphs from 
these sub-expressions are then merged using Horn rules. 

1   Introduction 

As the amount of publicly available bioinformatics and genetics data grows larger, the 
opportunities available to cancer biology researchers increase immensely. However, 
with these opportunities come additional challenges with respect to storing, retrieving, 
and analyzing this data [2]. It becomes essential to utilize semantic representation of 
the information stored in multiple data sources in order to define correspondence be-
tween entities, resolve conflicts between sources, and automate the integration proc-
ess [8]. Interoperability for data representation and management can be improved as is 
necessary by using knowledge representation techniques that can describe the seman-
tics of the data [13]. 

At the forefront of advancing the technology and implementation of semantic rep-
resentations and collaborative environments is the National Cancer Institute (NCI) 
through its cancer Biomedical Informatics Grid (caBIG) program. caBIG is develop-
ing standards and guidelines along with data and analytical services that can be  
accessed and utilized through open-source software tools, all within a grid-based ar-
chitecture referred to as caGrid [9]. 

We have developed semCDI as a model that enables users to query an integrated 
view of caBIG data services at a conceptual semantic level [10]. It allows researchers 
to utilize a single conceptual representation of the data instead of the various and  
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distinct domain models defined by 
each of the underlying data services. 
In this paper, we present an extension 
to semCDI to demonstrate the ma-
nipulation of queries into sub-
expressions for specific caBIG data 
services using semQA, a SPARQL 
query algebra extension [11],  and the 
merging of results from these sub-
expressions through the application of 
Horn rules. 

2   Background 

Interoperability is addressed by 
caBIG using a design consisting of a 
syntactic layer and three semantic 
layers. At the syntactic layer, interface 
integration is handled. The semantic 
layers are organized as follows: first, 
the controlled terminology layer is 
maintained in the NCI Thesaurus [3], 
a reference terminology published by 
the Enterprise Vocabulary Service 
(EVS). It includes a list of all concepts 
that the caBIG semantic structure  
recognizes. Each of these concepts is 
tied to one or more common data ele-
ments (CDEs). A CDE identifies a 
property that can be associated with a 
concept; it also assigns a value restric-
tion or value domain to that property. 
The third semantic layer of caBIG, the 
domain model layer, is data source 
driven, meaning that it is a collection 
of UML models of the caBIG compli-
ant data services. These models are 
used to bind the data source metadata 
to caBIG’s concepts and CDEs. The 
domain models and CDEs are contained within the cancer Data Standards Repository 
(caDSR). The caBIG program supports an increasing number of tools and datasets of 
interest to cancer research. Data services in caBIG are compatible because the ele-
ments of the underlying data sources are mapped into domain object models that are 
annotated to offer semantic meanings as provided in the caDSR and EVS [9]. The  
 
 
 

SELECT ?symbol ?gene_name 
  ?org_name ?chr_map ?cluster_id  
FROM cabio, cafe 
WHERE { 
 ?gene rdf:type :Gene; 

:geneSymbol ?symbol; 
:genePathway ?pathway; 
:geneOrganism ?org . 
OPTIONAL {?gene  
  :geneName ?gene_name } 
OPTIONAL {?gene  
  :geneLocation ?chr_map } 
OPTIONAL {?gene  
  :geneClusterId ?cluster_id } 
?org :organismName ?org_name . 
?pathway  
  :pathwayName ?pathn . 
FILTER (?pathn=“h_egfPathway”) 

}

Table 1. SPARQL query for genes related 
to the EGF pathway within caBIG 

<!—rule 1-->
Organism_has_Scientific_Name 
 [ rdf:type -> 
 owl:InverseFunctionalProperty]
<!—rule 2--> 
Forall ?x ?y 
 ?x = ?y :- 
 And( 
  ?x [ rdf:type -> :Gene ] 
  ?y [ rdf:type -> :Gene ] 
  Exists ?z ?w ( 
   And ( 
    ?x [ :geneOrganism -> ?z ] 
    ?y [ :geneOrganism -> ?w ] 
    ?z = ?w 
   ) 
  ) 
  Exists ?a ?b ( 
   And ( 
    ?x [ :geneSymbol -> ?a ] 
    ?y [ :geneSymbol -> ?b ] 
    ?a = ?b 
   ) 
  ) 
 )

Table 2. Horn Rules for organism and 
gene equivalence 
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data services also require 
querying to be performed 
using CQL, an XML-based 
caGrid query language. 

semCDI is a query for-
mulation that defines an 
ontology view of caBIG 
semantics, where terminol-
ogy concepts and domain 
model classes are modeled 
as ontology classes, asso-
ciations between doman model classes are represented as object properties, attributes 
encoded in CDEs are modeled as datatype properties, and data objects are modeled as 
OWL individuals members of the corresponding domain model class.  semCDI then 
uses the SPARQL query language [6] as the formulism to pose queries against this 
ontology view. Table 1 presents the SPARQL representation of a query for pathway 
objects representing the 
EGF signaling pathway, 
and interrelated gene 
and organism objects.  

This merging of in-
dividuals is indicated 
in the semCDI query 
formulation using definite Horn rules, which define a priori conditional statements 
that are not explicitly asserted by the ontology extracted from caBIG. By design, 
they are defined outside of the query, to allow the use of the same rules with mul-
tiple queries independently. Two Horn rules are shown in Table 2: the first one 
uses the OWL inverse-functional property type to indicate that two organisms are 
the same if their scientific names are equal; the second rule indicates that two 
genes are the same if their organisms and gene symbols are equal. In these rules 
we use the presentation syntax derived by the Rules Interchange Format (RIF) 
Working Group from W3C [1]. 

3   Query Processing  

In order to process a query formulated against the ontology view of caBIG, it is nec-
essary first to represent the query in terms of the data sources to be queried. This is 
achieved by using OWL subclasses and subproperties distinguished by namespaces. 
Table 3 shows a partial representation of the query in Table 1, denoted using the query 
algebra defined in the standard [6]. Note the use of the SPARQL Union operator 
where data is obtained from multiple sources. Note also that the cluster ID is only ob-
tained from caBIO, as caFE does not contain this information. 

Table 4. SPARQL expression with zero results 

Join( 
 {?gene cabio:geneSymbol ?symbol}, 
 {?gene cafe:geneName ?gene_name})) 

LeftJoin( 
 Join( 
  Union(  
   {?gene cabio:geneSymbol ?symbol}, 
   {?gene cafe:geneSymbol ?symbol})  
  Union( 
   {?gene cabio:geneName ?gene_name}, 
   {?gene cafe:geneName ?gene_name})), 
 {?gene cabio:geneClusterId ?clusterId}, 
 true) 

Table 3. SPARQL algebra representation of 
simple query indicating source of data 
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The graph pattern expression 
of this rewritten query then 
needs to be divided into sub-
expressions that obtain data 
from each specific data source. 
This is achieved by utilizing our 
semQA query algebra extension 
for SPARQL, which defines 
properties and equivalences be-
tween graph patterns. semQA is 
detailed elsewhere [11]; in sum-
mary, it substitutes Union by an 
idempotent-disjunction Or op-
erator that can be distributed 
over both Join and LeftJoin. In 
particular for semCDI, algebraic 
manipulation is simplified by 
the fact that the Join of two 
SPARQL triple pat-
terns from different 
data sources, as in  
Table 4, will result in 
zero solutions. With 
this, then, the query in 
Table 1 is transformed 
into the algebraic ex-
pression in Table 5. 

Each sub-expression 
of a query so trans-
formed is then converted 
into an equivalent query 
using CQL, the query 
language for caBIG; 
this conversion is 
straight-forward, and 
involves obtaining the 
domain model descrip-
tor for each data-source 
specific property and 
class. The results from 
the set of CQL queries are then combined into RDF solution graphs for the original query, 
as described in the following section. 

4   Result Merging 

Each CQL query results in a set of individuals that can be represented as an RDF graph. 
For example, the query in Table 5 results in individuals such as the ones illustrated in  
 

Table 5. SPARQL algebra representation of query in Table 1 
with sub-expressions by data source 

or( 
 Join(  
  {?gene rdf:type cabio:Gene}, 
  {?gene cabio:geneSymbol ?symbol}, 
  {?gene cabio:geneName ?gene_name}, 
  {?gene cabio:geneClusterId ?clusterId}, 
  {?gene cabio:geneOrganism ?org}, 
  {?org cabio:organismName ?org_name}, 
  {?gene cabio:genePathway ?path}, 
  Filter((?pathn = “h_egfPathway”), 
   {?path cabio:pathwayName ?pathn})), 
 Join(  
  {?gene rdf:type cabfe:Gene}, 
  {?gene cafe:geneSymbol ?symbol}, 
  {?gene cafe:geneName ?gene_name}, 
  {?gene cafe:geneLocation ?chr_map}, 
  {?gene cabio:geneOrganism ?org}, 
  {?org cabio:organismName ?org_name}} 
) 

Fig. 1. RDF graph of query result from (a) caBIO and 
(b) caFE 

(a) 

 
(b) 

_:b2Organism a “Homo Sapiens”organismName

geneOrganism

_:b3Pathway a “h_egfPathway”pathwayName

genePathway

Gene _:b1a
geneName

geneSymbol
geneClusterId

“Casein kinase 2, alpha 1 polypeptide”

“CSNK2A1"

699157

_:b4Gene a
geneName

geneSymbol
geneLocation

_:b5Organism a “Homo Sapiens”organismName

geneOrganism

“casein kinase 2, alpha 1 polypeptide”

“CSNK2A1”

“20p13”
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Figure 1(a) for 
caBIO and (b) for 
caFE. Other similar 
results can be ob-
tained from other 
sources that model 
the concept “Gene”. 
Note that RDF 
blank nodes are used 
to denote the indi-
viduals returned. 

Such solutions 
must be combined 
according to the Horn rules associated with the query. This is achieved through the 
Horn-rule merge algorithm illustrated in Table 6. This algorithm takes as input two 
RDF graphs, g and h, a query q, and a set of Horn rules r; the two graphs are two so-
lutions to the original query coming from different data sources. The algorithm begins 
with an RDF merge [7] of g and h. Next, it verifies whether two individuals within the 
resulting merged graph are equivalent by testing the Horn rules; if so, it merges these 
individuals by creating a new blank node.  

The application of this algorithm to the results in Figure 1 is illustrated in Figure 2. In 
part (a), rule 1 from Table 2 is applied, substituting _:b2 and _:b5 as _:m1. The second 
part applies rule 2 to further 
combine _:b1 and _:b4 into 
_:m2. Note that in this latter 
combination, the ?gene_name 
variable could not be combined, 
as the lexical match between the 
terms is not exact due to a differ-
ence in letter case; thus, when 
projected into a table of variable 
bindings, each gene object will 
result in two rows, one for each 
name. 

5   Experimental Results 
and Discussion 

Java prototypes of the major 
model components have been 
created and interfaced with the 
caGrid services. The query in 
Table 1 was run against caBIO 
and caFE; other sources could 
not be used due to unavailability 
through caBIG. Table 7 shows a  
 

Fig. 2. RDF graph after the application of (a) rule 1 
and (b) rule 2 

Table 6. Summary of the Horn rule merge operation 

INPUT RDF graphs g,h, query q, Horn rules r[] 
m = RDF-merge(g, h) 
FOR EACH variable v in query q 
  FOR EACH individual x in m bound to v 
    FOR EACH individual y in m bound to v  
      IF x = y by some Horn rule r[i] 
        z = new label not in m 
        FOR EACH triple in m referring to x  
          replace x by z 
        FOR EACH triple in m referring to y  
          replace y by z 

 

 

(a) 

(b) 

_:m1Organism a “Homo Sapiens”organismName

Gene _:b1a
geneName

geneSymbol
geneClusterId

_:b3Pathway a “h_egfPathway”pathwayName

genePathway

geneOrganism

_:b4Gene a
geneName

geneSymbol
geneLocation

geneOrganism

“Casein kinase 2, alpha 1 polypeptide”

“CSNK2A1"

699157

“casein kinase 2, alpha 1 polypeptide”

“CSNK2A1”

“20p13”

_:m1Organism a “Homo Sapiens”organismName

a

geneName

geneSymbol
geneClusterId

_:b3Pathway a “h_egfPathway”pathwayName

genePathway

geneOrganism

geneName

geneLocation

Gene _:m2

“Casein kinase 2, alpha 1 polypeptide”

“CSNK2A1"

699157

“casein kinase 2, alpha 1 polypeptide”

“20p13”
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Table 7. Partial result for the query in Table 1 

symbol ?gene_name ?org_name ?chr_map ?cluster_id

FOS V-fos FBJ murine osteosarcoma vi-
ral oncogene homolog 

Homo sapiens 14q24.3 25647

FOS v-fos FBJ murine osteosarcoma viral 
oncogene homolog 

Homo sapiens 14q24.3 25647

CSNK2A1 Casein kinase 2, alpha 1 polypeptide Homo sapiens 20p13 701971

CSNK2A1 casein kinase 2, alpha 1 polypeptide Homo sapiens 20p13 701971

EGF Epidermal growth factor (beta-

urogastrone) 

Homo sapiens 2q42-q43 419815

EGF epidermal growth factor Homo sapiens 2q42-q43 419815
 

listing of the first six of the 44 results obtained. We have shown a more extensive set 
of queries and results obtained in [10]. 

Several grid-specific issues were encountered. First, many of the caBIG data 
sources had service outages ranging from a few hours to a few days. Second, as many 
of these queries involve large data sets, the time it takes to formulate an ontology or 
receive query results ranged from two minutes to twenty minutes. Third, several of 
the caDSR domain models contain internal inconsistencies, for example, the field 
‘name’ in the caFE domain model is associated with both ‘organismName’ and ‘or-
ganismScientificName’ in caDSR, causing the ambiguity to be carried over into the 
solution graph. As the caBIG project continues to mature and more scientists use the 
grid for their research, it is likely that many of these issues will be resolved by the 
caBIG community. 

There has been recent work within the caBIG community to develop an infrastruc-
ture of data identifiers that would be used to uniquely identifying concepts on the 
grid. This includes work for the caGrid Identifier Services Framework, which will be 
capable of supplying globally unique names for caBIG domain objects. Once these 
additions have been implemented, our models can be extended to leverage these iden-
tifiers as a standard Horn rule applied to the result sets.  

We are exploring the use of alternative caGrid query interfaces to reduce the over-
head of object serialization. Also, the query model will be evaluated against more 
complex query patterns, and will be expanded to incorporate additional semantics 
available through NCI Thesaurus. Finally, a visual query interface will be designed to 
assist cancer researchers with query formulation. 

6   Related Work 

As a part of caBIG, the cancer Translational Research Informatics Platform (caTRIP) 
project achieves integration of data from a predefined set of grid services using an ob-
ject-oriented design. caTRIP performs queries through a federated query engine by us-
ing Distributed CQL (DCQL), which is an extension to the CQL query language used 
by caGrid. In order to merge data from multiple sources for a single query, users must 
link the attributes for data elements together within the query designing portion of  
the user interface; the model presented here, on the other hand, uses the relationships 
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established through Common Data Elements to define the conditions for merging data 
based on the semantics of caBIG. 

The use of SPARQL to execute queries over distributed data nodes in a grid is pro-
posed in [4]; unlike semCDI, this is based upon the use of relational algebra rather 
than algebras on SPARQL. Other mechanisms for distributing queries expressed in 
SPARQL and other RDF query languages include [7], [12]; these mechanisms are 
concerned with queries on RDF data stores. None of the systems or proposals ex-
plored in the literature utilize both SPARQL and Horn rules to enable the merging of 
results obtained from querying. 

7   Conclusion 

We have presented a model that enables users to query an integrated view of caBIG 
data services at a conceptual semantic level, allowing researchers to utilize a single 
conceptual representation of the data instead of the various and distinct domain mod-
els defined by each of the underlying data services. We have showed the application 
of the semCDI query formulation to generate an ontology view of caBIG semantics 
and define queries in SPARQL complemented with Horn rules; the use of the semQA 
algebra extension for SPARQL to manipulate queries and obtain sub-expressions for 
each data service; and the mechanism for the combination of the results from these 
sub-expressions according to Horn rules. We have presented examples and experi-
mental results showing the working of the model, and we have discussed the direction 
of future work. 
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Abstract. Biological data deluge has challenged researchers over the
last decade. Expressed sequence tag (EST) analyzes provide a rapid and
economical means to identify candidate genes, gene expression profiles
in different cell conditions, as well as functional annotation of putative
gene products. Although EST analysis tools are publicly available there
is still a lack of comprehensive data analysis and management programs.
This work presents SisGen, an integrated software system capable of
efficiently managing multi–user genomic projects. SisGen is a Java client–
server application that uses CORBA as a middleware in a multi–layer
architecture. The software integrates data management an annotation
pipeline in a rich graphical visualization environment. The architectural
design is presented and highlights the advantages in terms of portability,
interconnectivity, modularity and user interface that can be achieved
with this concept.

1 Introduction

The advent of the genomic era in the last century promoted an exponential in-
crease in sequences in public databases, exceeding by far the capacity to perform
experimental analyzes to pinpoint their roles in the cellular milieu. Concomi-
tantly, the use of computers was perceived as pivotal to help transform sequence
information into biological knowledge [1].

One type of genomic data that greatly contributed to sequence accumula-
tion was the expressed sequence tags (ESTs; [2]). ESTs are short, single–pass
sequences derived from random sequencing of cDNA library clones. Given that
their generation is affordable, ESTs rapidly became a popular strategy for gene
discovery in eukaryotes.

In the course of EST sequencing projects, data is continually generated by
sequencing machines in the form of electropherograms, the starting material for
the computational processing cascade aiming to infer biological function. Aside
from numerous theoretical and algorithmic difficulties inherent in sequence an-
notation, a more fundamental problem of data management, processing and in-
tegration emerges. Many solutions have been developed over the years to provide
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software systems dealing with the task of managing and annotating EST data,
among them ESTWeb [3] and ESTExplorer [4], to cite a few. A critical evalua-
tion several such programs was recently published [5]. A common theme is that
they are web–based and coded in scripting languages like PERL or PHP. Despite
progress in data organization and visualization, most of the existing systems still
lack an integrated and robust approach required for EST data management.

Here we explore the concept of using enterprise–level software architectures
to tackle the EST project management problem, which can be modeled as a
distributed computing system. In this context, middleware technologies connect
software components and provide an integration layer between heterogeneous
systems. One of the earliest and most successful middleware architectures is
CORBA (Common Object Request Broker Architecture), on top of which many
home banking and electronic commerce systems were built.

Several groups recognized the importance of middleware technologies, such as
CORBA, to enable the creation of elaborated applications integrating the many
data formats and analytical tools present in the bioinformatics field [6]. Using
this technology, we present a new software package, called SisGen that em-
ploys middleware concepts to cope with the data integration and administration
problems faced in EST sequencing projects.

2 Methods

Computer Systems. All development was geared to adopt free software. The pro-
gramming language and the ORB were provided by the Java Platform Standard
Edition v1.5. The persistence layer was provided by the hibernate framework
in conjunction with the relational database server PostgreSQL 8.2. Production
servers run the Linux operating system. The clients are platform independent
and distributed via Java Web Start technology. Further details can be found at
http://bioinformatics.cenargen.embrapa.br/genoma.

Data Model. The data model was created with a project–centric vision, modeling
aspects of raw sequence data being sent from different laboratories and providing
detailed provenance and accounting. EST projects are hierarchically divided as
having multiple cDNA libraries, each containing several plates, which in turn
consist of individual reads. There is also provision for version control that permits
read resubmission.

Annotation Pipeline. Starting from electropherograms, several third–party bioin-
formatics programs are applied in order to process raw data and provide func-
tional annotation of the sequences. Custom–made wrappers and parsers were
created to coordinate execution and integration of the ensuing results to the sys-
tem. The pre–processing pipeline starts with the base calling program PHRED [7],
cloning vector removal with cross match (http://www.phrap.org), repeat mask-
ing with RepeatMasker (http://www.repeatmasker.org) and quality trimming
with Lucy [8]. These steps are executed concurrently with sequence submission
and provide real–time feedback to the submitter about the read/plate quality.

http://bioinformatics.cenargen.embrapa.br/genoma
http://www.phrap.org
http://www.repeatmasker.org
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The next step in the pipeline is the functional annotation run on demand at
server side. It starts with EST clustering using TGICL [9]. The resulting cluster
consensi are subjected to several similarity searches using BLAST [10] against a
series of databases defined during the project setup. Classification according to
Gene Ontology (GO) and Enzyme [11] is inferred by mapping similarity search
results against appropriate databases.

Sequence features that can be used as potential molecular markers for ge-
netic studies are also annotated. Single nucleotide polymorphisms (SNPs) are
predicted for each EST cluster using PolyBayes [12]. Simple sequence repeats
(SSRs) are located in cluster consensi using the program mreps [13].

3 Results

3.1 Platform Design

The main objective was to provide an integrated software system capable of
efficiently managing multi–user genomic projects, encapsulating several bioin-
formatics services for the analysis and manipulation of sequence data. Also,
some key points were detrimental to the design process, such as (i) portability,
(ii) efficiency and (iii) rich graphical user interface (GUI) for easy navigation.

The web based systems currently used by the vast majority of EST manage-
ment systems often sacrifice design in detriment of simplicity and rapid devel-
opment. Though successful most of the times, they may face shortcomings in
terms of scalability, performance and flexibility. We adopted, instead, a multi–
layer architecture using CORBA as middleware to service data between a java
client program and the project database. Implementation was made in Java lan-
guage and tried to adopt design patterns such as business object, data transfer,
business delegate and session facade [14]. This promoted code reuse as well as
clear separation between the data and the presentation layer. An overview of
the system architecture is shown in Fig. 1, and the individual components are
detailed below.

Presentation Layer. This is the piece of software used by the end user to interact
with SisGen. Instead of a web browser, a custom made graphical user interface
(GUI) was created using Java’s swing library. A general overview of selected
windows is shown in Fig. 2.

Departing from the common solution employing web browsers has some trade-
offs though. First there is an increase in time spent designing the GUI. Also there
is the versioning problem of how to distribute the client updates to maintain the
compatibility with the server. This was effectively solved by using Java Web
Start technology, which transparently ensures that the latest version of the ap-
plication is deployed. However, the GUI programming is really an issue since the
majority of the code in SisGen is devoted it. Notwithstanding, several benefits
arise when using Java GUIs, which include better navigation and management
of several windows. Also, there is a gain in flexibility since streamlined graphical
components can be created, as seen in Fig. 2.
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Fig. 1. Diagram of SisGen multi–layer architecture using CORBA as a middleware to
service data between a client program and a project database. Distribution of presen-
tation, logic and data layers elements.

Fig. 2. Screenshot of several features available on SisGen showing clustering popula-
tion, sequence analysis, chromatogram viewer, blast output analysis tool, plate quality
visualization and clone quality map.

The client can navigate through various levels of project and sequence infor-
mation, querying and gathering data from the server through the coordination of
a business delegate [14], that hides client–server remote communication details
(Fig. 1) reducing coupling between the presentation and logic layers.

As long as the user queries and loads data, some computation can be carried
out at the client side, relieving server communication burden. In order to expand
SisGen client capabilities, a feature was added permitting remote execution of
analytical bioinformatics tools using Soaplab [15]. Soaplab exposes command–
line applications as web services using SOAP (Simple Object Access Protocol)
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protocol. The modular design allows SisGen client to seamlessly interact with
different middleware technologies, aside from its core functionalities mediated
by the CORBA server.

Logic Layer. Controls the main aspects of application functionality in response
to client queries. It provides the unified interfaces to interact with the data layer.
A object–relational mapping layer, driven by hibernate framework, hides the in-
ner details of database operations encapsulating them in the object–oriented
realm. This not only improves coding but also provides database back end inde-
pendence. Additionally, one design strategy was to make provision to physical
separation of the machines running the database server and the logic layer, im-
proving security and distributing computation. Finally, the logic layer controls
annotation pipeline execution, which is shielded from the end user.

Data Layer. For a specific SisGen project there are two main databases. One,
the management database, is shared by all projects and contains project and user
information details. The other database, on the same server machine, contains
the sequence and annotation data itself.

3.2 System Features

Several core aspects of an EST management software are shared by SisGen
and other web platforms, like EST data summary statistics, visualization of
sequence and associated PHRED quality, project/user management or inspection
of BLAST run reports, among others. Additionally, some noticeable features are
peculiar to SisGen and are detailed next.

Data Transfer. The main use case from a sequencing facility perspective is to
transfer raw electropherograms to the central bioinformatics repository. The mid-
dleware architecture adopted by SisGen enables a data transfer solution that is
efficient and flexible. Directories, individual or compressed files containing elec-
tropherograms can be transferred in batch to the server. Real–time feedback
permits the monitoring of transfer progress and individual plate quality (Fig. 3a).

Alignment Viewer. A generic sequence alignment and assembly viewer was cre-
ated, capable of displaying several types of data present in an EST sequencing
project. This viewer is integrated in SisGen but it is a completely independent
and stand–alone component that can be used to visualize DNA/protein multiple
alignments, BLAST results and sequence assembly files (ace format). The viewer
is used to inspect the EST clusters and presents several measures of sequence
conservation, like sequence logos and entropy plots (Fig. 3b).

Molecular Markers. As described in the Methods section the annotation pipeline
predicts the location of polymorphic sequence sites that could be used as molec-
ular markers. A bayesian inference procedure is used to predict the incidence of
SNPs taking in consideration sequence coverage and quality [12]. An example of
such SNP discovery process can be found in Fig. 3c.
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Fig. 3. Screenshots of SisGen user interface. a) Shows the file transfer interface; b)
The Universal Sequence Viewer with cluster sequence alignment, detailing the sequence
logo plug-in and the entropy plot; c) Display of Single Nucleotide Polymorphism (SNP)
predictions; d) Metabolic pathway according to KEGG database.

Another type of molecular markers, the SSRs or microsatellites, are also anno-
tated. Primer pairs flanking each microsatellite region are automatically gener-
ated. These PCR (polymerase chain reaction) pairs are suited to experimentally
verify genetic diversity.

Finally, an electronic–PCR service is provided. The user provides several
primer pair sequences and a search is performed to identify which sequences
potentially could result in a PCR amplification product. This information can
be used to assign gene annotations on markers placed on genetic maps.

Metabolic Pathway Viewer. Cross references to Enzyme database [11] are made
by means of similarity searches. The sequence annotation section of SisGen
client has an option to visualize ESTs annotated as enzymes inside their corre-
sponding metabolic pathway(s), by performing queries to KEGG database [16].
It is possible to interrogate which ESTs map to a specific metabolic pathway
and provide a visual component capable interacting with KEGG and the EST
database (Fig. 3d).

3.3 Practical Applications

EST projects of varying complexities are currently being managed by SisGen
from small to large scale. At one end the project for the plant parasite Phy-
tomonas serpens contains about 2,000 ESTs from one cDNA library [17]. Con-
versely, the Genolyptus project [18] contains ≈ 130, 000 sequences from four
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eucalyptus species, obtained from more than 20 cDNA libraries, but also
including genomic sequences derived from BAC (Bacterial Artificial Chromo-
some) ends.

4 Discussion

The inherent complexity of genomic sequencing efforts was the main motivation
to create a new software for managing EST data. The multi–layer architecture
centered on CORBA offers several advantages in the software engineering per-
spective, that sets it apart from previously reported software solutions devoted
to this problem [5]. The main advantages of such design are improved modu-
larity, efficiency and better testing and debugging. Also, the choice to create
GUIs instead of using web browsers for the presentation layer, although time–
consuming, pays off in terms of added capabilities of the client software to handle
the heterogeneous and data–rich environment of genomics.

The core of the software, based on CORBA as the middleware, has some
disadvantages tough. Albeit a popular enterprise solution last decade, several
issues about CORBA complexity and maintainability were raised [19]. In our
experience complexity was not an issue, since we streamlined the code to use
only essential CORBA services. Still some CORBA aspects were not satisfac-
tory, like firewall traversal and lack of ORB interoperability. The inclusion of a
business delegate in our platform provides an extra level of independence from
the middleware technology. In principle, porting to another middleware solution
like Java RMI (Remote Method Invocation) or web services would only involve
the redesign of the business delegate itself.

5 Conclusion

A new concept of EST management software is presented. It is currently in full
production managing dozens of projects. In the future we envision improving
data integration, by providing compatibility layers to data models such as the
Generation Challenge Program standards for crop data [20] and exposing several
data querying modules as BIOMOBY services [21] to enable interoperability with
other bioinformatics servers.
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Abstract. Gene expression patterns are a key feature in understanding gene 
function, notably in development. Comparing gene expression patterns between 
animals is a major step in the study of gene function as well as of animal 
evolution. It also provides a link between genes and phenotypes. Thus we have 
developed Bgee, a database designed to compare expression patterns between 
animals, by implementing ontologies describing anatomies and developmental 
stages of species, and then designing homology relationships between 
anatomies and comparison criteria between developmental stages. To define 
homology relationships between anatomical features we have developed the 
software Homolonto, which uses a modified ontology alignment approach to 
propose homology relationships between ontologies. Bgee then uses these 
aligned ontologies, onto which heterogeneous expression data types are 
mapped. These already include microarrays and ESTs. Bgee is available at 
http://bgee.unil.ch/ 

Keywords: gene expression pattern, homology, ontology, data integration. 

1   Introduction 

Gene expression patterns (when and where a gene is expressed) are a key feature that 
underlies the development of organisms and phenotypes of individuals. They are an 
important aspect of the study of gene function. Moreover, the study of the evolution 
of developmental processes, often called “evo-devo”, has shown that the primary 
source of change in the evolution of phenotypes is changes in gene expression [1] 
rather than sequence. 

Comparing gene expression patterns between animals is thus a major step in the 
study of gene function as well as of animal evolution, and also provides a link 
between genes and phenotypes. 

                                                           
* Co first authors. 
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In biological research, results obtained in different organisms are routinely 
compared. A comparative approach may be chosen for practical reasons because the 
organism of interest (humans, farm animals) may be less amenable to experimentation 
than more or less distant model species (as mouse, rat, zebrafish, or fruit fly). 

Another reason is that components of gene expression may vary for no obvious 
reason [2]; this introduces the problem of distinguishing this signal from the noise 
caused both by random evolution and the inaccurate data measurements. Comparative 
study of gene expression in several species may contribute to this distinction. For 
example, comparing multiple samples from humans and rodents gave sufficient 
statistical evidence for a functionally relevant component of gene expression [3], and 
allowed for significant improvement in tumour characterisation [4]. 

Transcriptome data have also been compared among species to gain direct insight 
into evolutionary processes. For instance, yeast microarray data provided evidence for 
divergence of expression after genome duplication [5], and further studies have 
succeeded in extracting some evidence for the evolution of new gene functions after 
genome duplication in yeast and human lineages [6, 7]. A comparative approach 
would allow to understand the mechanisms and the consequences of gene expression 
evolution. 

We have developed Bgee (a dataBase for Gene Expression Evolution) to address 
these questions. Bgee must answer the following requirements, to enable large scale 
gene expression pattern comparison: 

• Precise description of the anatomy and developmental stages of each species, 
stored in a computer-understandable way. 

• Integration of expression data in order to know in which anatomical features 
(spatial mapping) and which developmental stages (temporal mapping) genes are 
expressed. 

• Comparison criteria between anatomies, developmental stages, and genes. 

To unambiguously describe anatomy and development of a species in a computer-
understandable way, ontologies are required: they describe a domain of knowledge, 
by using well-defined concepts and designing relationships amongst them. Several 
databases provide species-specific ontologies that describe anatomical features for a 
species, such as ZFIN [8] for the zebrafish. But as far as we know, no database 
provides relationships between these ontologies to allow comparisons. 

The appropriate criterion to make comparisons in an evolutionary context is 
homology: we need to compare features that derive from the same ancestral element. 
We have thus designed homology relationships between anatomies of different species. 
This is a difficult task, and Bgee implements computational methods to achieve it 
(section 2). Then, we need homology relationships between genes. This point has 
already been abundantly treated in bioinformatics, and will not be discussed in detail in 
this paper. Finally, we need relationships between developmental stages. As these 
stages are artificial features that help to describe the continuous process of 
development, homology cannot be defined in a rigorous manner. We have rather 
designed a mapping of “equivalent” developmental stages between species (section 3). 

To describe gene expression patterns, Bgee requires large amounts of data. To this 
end, heterogeneous data types are used (ESTs, microarrays, and soon in situ 
hybridizations). The common information to gather is whether an experiment has 
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determined that a gene is expressed or not, and with which confidence. We have applied 
different statistical tests for each data type to obtain this information (section 4). 

Thanks to the successful implementation of all these requirements (anatomical and 
developmental ontologies, comparison relationships between ontologies and genes, 
integration of heterogeneous expression data), Bgee allows the easy retrieval of gene 
expression data for different species, as well as the automated comparison of gene 
expression patterns. 

2   Designing Homology Relationships between Anatomical 
Ontologies by an Ontology Alignment Approach 

To study the evolution of gene expression patterns, comparisons have to be done 
between organs that evolved from a common ancestral structure. Thus designing 
relationships between anatomical ontologies consists in finding correspondences 
(homology relationships) between the concepts (organs) of these ontologies. This 
problem is a special case of “schema matching”, or “ontology alignment”. 

Ontology alignment ([9] for a review) is the process of determining 
correspondences between ontology concepts. Usually, this technique is used to find 
the common concepts present in two ontologies. In the case of anatomical ontologies, 
the concepts to align are not strictly common, but rather, related: a homology 
relationship is not an equivalence relationship. For this reason, ontology alignment 
approaches developed for other applications cannot be applied as is: these methods 
would be misled by the existence of elements of same names and related to the same 
concept, but not homologous (eye of insects and of vertebrates for instance), or 
reciprocally, homologous elements with different names (pectoral fin and upper limb 
for instance). This is why we apply modified ontology alignment techniques in order 
to find putative homologies between two species anatomies. An expert has to 
manually validate the putative homologs. This method is implemented by Homolonto, 
a software that we have developed in Java. Homolonto will be presented in detail 
elsewhere; we present here the outline of its algorithm. 

Our process is a supervised one: at each step, some homology relationships are 
proposed to the expert, who may validate them or not. Computations are made based 
on these decisions, and new propositions are made to the expert. 

The algorithm starts with a list of pairs, which have identical names. This is based 
on the assumption that two structures that have the same name are likely homologous. 
For example, “optic cup” of the ZFIN ontology (zebrafish) and “optic cup” of the 
EHDA ontology (human) will be paired, but “optic cup” of ZFIN will not be initially 
paired with “optic nerve” of EHDA. The score of similarity between terms is up 
weighted by the proportion of common words, and down weighted by the frequency 
of these words (frequent words are less informative, e.g. “endoderm”). Moreover, 
scores are propagated between pairs which are neighbors in both ontologies. For 
example, the score of the “optic cup” pair is added to the score of the “eye” pair, as 
“optic cup” is part of “eye”. In the same way, the score of the “eye” pair is added to 
the “optic cup” one. 
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Each pair is proposed to the expert, in descending order of scores. The expert may 
validate or invalidate the hypothesis of homology, or delay decision. The expert may 
choose to evaluate any number of pairs before triggering an iteration, in which 
computations are performed. Computations create or extend homology groups. The 
new homology information is propagated through the ontologies. The underlying idea 
is that if two concepts A and B are homologous, then one of the sub-concepts of A is 
probably homologous to one of the sub-concepts of B even if they have different 
names. Of note, validated homology contributes a significantly higher score than 
name similarity. Propagation is down weighted by the number of sub-concepts, to 
avoid generating many false positives (e.g. all the children of “whole body”). 

Evaluation of pairs, ordered by total score (base score + propagated score), and 
iteration, are repeated until the expert decides to terminate, or no more pairs are 
proposed. Compared to manual alignment of the ontologies, Homolonto reduces time 
considerably, with high sensitivity. Thus aligning the zebrafish (ZFIN; 2087 terms) 
and Xenopus (Xenbase; 480 terms) ontologies took one month by hand, but 2 days 
using Homolonto. The first 213 pairs proposed to the expert were valid at 80%, and 
contained 91% of all true positives. 

To design homology relationships between several species, we merge the 
homology groups obtained by pair-wise alignment.  

Finally, Homolonto generates an OBO [10] file containing the homology relation-
ships. Bgee then parses this file to integrate the homologies into the database. 

3   Mapping of the Developmental Ontologies 

In relationship with the anatomical ontologies, Bgee uses for each species an ontology 
which describes its developmental stages, and links them using an is_a relationship 
by key states (e.g. embryo, hatching, larval). 

To compare expression patterns, the comparisons have to be done both between 
homologous organs (see section 2), and at an equivalent developmental stage. But it is 
not possible to “simply” identify stages between species for which the state of the 
development is identical: organs do not develop at the same speed and with the same 
sequence, development is heterochronous (e.g. [11]). 

A solution could be to identify, for each organ involved in a homology 
relationship, the different key states of their formation, and to design, organ by organ, 
equivalence relationship between these states in different species. This solution is 
difficult to implement, as it would imply manual definition for each organ separately, 
without any guiding principle in the data (i.e. we cannot use shared names and 
ontology structures as for anatomical homology). 

Although there is no direct equivalence between the stages of two species because 
of heterochrony, it is instead possible to identify key events of development, common 
to all bilaterian animals. We have developed a small ontology of these common 
“metastages”: embryo – including zygote, cleavage, blastula, gastrula, organogenesis 
–, post-embryonic development, adult. Then we have mapped the developmental 
stages of each species to these “metastages”. This approach results in a loss of 
accuracy regarding the developmental ontologies, but allows to compare gene 
expression patterns taking into account the time dimension. 
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4   Integrating Heterogeneous Data on Anatomical and 
Developmental Ontologies 

Integrating heterogeneous expression data is challenging, as it is difficult to compare 
the results of different types of techniques (e.g. ESTs, microarrays, in situ 
hybridizations) [12, 13], and even for a same type, to compare results between 
experiments (e.g. compare two microarray experiments made on different platforms). 
But as we want to be able to precisely describe expression patterns of genes, we need 
data as complete as possible. We also want to obtain data for all the species studied, 
and some techniques cannot be applied to all species, for instance in situ 
hybridizations on human. The information we want to collect is in which organs, and 
at which developmental stages, a gene is expressed. It means that for each 
experiment, we have to map the data to anatomical and developmental ontologies, and 
to apply statistical analyses, depending on the data type, to identify genes 
significantly expressed. 

4.1   Mapping Expression Data to Ontologies 

The main problem to map the data to ontologies is that annotations are often 
inconsistent between data sources: for instance, the description of the organs on 
which an experiment has been performed can be provided as free text, controlled 
vocabularies, or ontologies. Therefore, we have manually annotated each experiment 
stored in Bgee to determine the unique identifiers (ID) in the anatomical ontologies of 
the organs studied, and the ID of the developmental stages.  

The granularity of the data is also highly variable. For instance, experiments can be 
reported on the organ “brain” or on the organ “forebrain”, at the stage “embryo” or at 
the stage “free blastocyst”. This is why ontologies are essential both for anatomy and 
for development: just listing the developmental stages would not have been sufficient. 

4.2   Statistical Analyses 

Bgee currently uses EST data from Unigene [14] and Affymetrix data retrieved from 
ArrayExpress [15]. For each data type, Bgee applies statistical tests to identify genes 
that are significantly expressed, with two levels of confidence: low and high. 

For experiments based on tag counting, such as EST, SAGE, or MPSS, a statistical 
test [16] shows that a gene is expressed with a 95% confidence if 7 tags are mapped 
to this gene (the number of tags is statistically different from 0). So for EST data, we 
have considered a gene as expressed with a high confidence if an experiment has 
found at least 7 EST related to this gene, and with a low confidence from 1 to 6 EST. 

Affymetrix data are measurements of fluorescence intensity. Labelled cDNAs 
prepared from samples are hybridized with oligonucleotide probes. All probes 
mapping to the same transcript constitute a probeset. Identifying genes significantly 
expressed consists in finding genes for which the signal of the probeset is 
significantly different from the background signal. This method is implemented by 
the MAS5 software [17]; based on these statistical analyses, probesets are flagged as 
"present", "marginal", or "absent". This allows us to classify genes expressed with a 
high confidence when their probeset is flagged as "present", and with a low 
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confidence when "marginal". Although MAS5 classification is efficient [18], the 
estimation of the background signal can be biased depending on probe sequence 
affinity [19]. We are currently implementing another method of detection [19], which 
uses the gcRMA algorithm [20] to normalize the signal taking into account probe 
sequences, and uses a subset of weakly expressed probesets for estimating the 
background. A Wilcoxon test is then applied to compare the normalized signal of the 
probesets with the background signal. Genes will be considered expressed with a high 
confidence if the p-value is lower than 1%, and with a low confidence if the p-value is 
between 1 and 5 %. 

Bgee will soon include in situ hybridization data. For data based on image 
analyses, statistical tests cannot be applied easily. Determining if a gene is expressed 
is usually done manually by an expert. A quality annotation can also be provided, 
summarizing the quality of the image, the hybridization, and the probes design. Such 
information is already present in several databases (e.g. ZFIN [8]), and Bgee will rely 
on them. 

5   Database and Web-Interface of Bgee 

The database of Bgee is developed with MySQL, and currently includes anatomical 
ontologies, developmental ontologies, and expression data for four species: human, 
mouse, zebrafish, and Xenopus: 

• The anatomical ontologies come from eVoc [21] for human, Xspan [22] for human 
and mouse, MGD [23] for adult mouse, ZFIN [8] for zebrafish, and Xenbase [24] 
for Xenopus. 

• EST data come from Unigene [14] and Affymetrix data from ArrayExpress [15]. In 
situ hybridization will be collected from specialized databases, as ZFIN or BGEM 
[25]. 

• Gene ontology [26] annotations and homology relationships between genes are 
recovered from Ensembl [27]. 

• Bgee currently includes a total of 104,881 genes. 51,277 have expression data, in 
587 anatomical structures and 93 developmental stages. 

The web interface of Bgee is developed in Java using the servlet container Tomcat, 
with a Model-View-Controller architecture. The user experience is improved by the 
use of AJAX technologies (Asynchronous Javascript And XML). The website of 
Bgee, available at http://bgee.unil.ch/, proposes several ways to easily retrieve or 
compare expression data: 

• Querying the database: data can be queried for genes, gene families, anatomical 
structures, or developmental stages, based on their names, synonyms, 
abbreviations, identifiers, or descriptions. 

• Browsing the ontologies: anatomical and developmental ontologies can be browsed 
as a tree structured view. Information about the genes expressed is displayed for 
each anatomical structure or developmental stages. The display of these expression 
data can be adjusted by selecting data type and data quality, or by entering a list of 
gene identifiers or of GO terms. 
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• Retrieving the expression pattern of a gene: the expression pattern of a gene is also 
displayed as a tree structured view of the organs where it is expressed, at the 
selected developmental stage. The data used to define the pattern can be modified 
by selecting the data type or data quality. 

• Comparing the expression patterns of homologous genes: the expression patterns 
of a gene family can be compared choosing the species studied, and as for the 
ontology browsing, by selecting data type and quality, list of genes or of GO terms. 

The homology relationships and developmental ontologies, both in OBO format, 
the Homolonto software and source code, and the Bgee database and source code, 
will soon be available on our website. 

6   Conclusions 

We have developed pipelines to integrate ontologies and expression data to Bgee, and 
automatically perform statistical analyses. We also have developed the Homolonto 
software to facilitate the design of homology relationships. We have paid great 
attention to make the Java code of Bgee easy to evolve, with a clean architecture and 
reusable components. We have thus implemented all the requirements to add more 
species and more data types into Bgee in the future. We plan to add in the short-term 
in situ hybridization data. 

The multi-species computer coding and storage of expression patterns was an 
essential key to perform high throughput analyses. We will now be able to design 
analysis tools dedicated to the comparison of expression patterns, and to address open 
biological questions, such as the relationships between evolution of development and 
of gene expression, or the identification of candidate genes for diseases. 
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Abstract. Integration of biological data of various types and development of 
adapted bioinformatics tools represent critical objectives to enable research at 
the systems level. The European Network of Excellence ENFIN is engaged in 
developing an adapted infrastructure to connect databases, and platforms to 
enable both generation of new bioinformatics tools and experimental validation 
of computational predictions. With the aim of bridging the gap existing 
between standard wet laboratories and bioinformatics, the Network ENFIN runs 
integrative research projects, which require the development of adapted 
infrastructures that will be described in this paper: (i) a database infrastructure, 
EnCORE, appropriate for small laboratories, which can integrate public and 
local data, such as microarray data, protein-protein interaction data and pathway 
information; (ii) a registry of databases to serve as a reference of trusted 
databases; (iii) The database EnDICTION, to capture functional predictions 
generated by the computational analysis platform.  

Keywords: ENFIN, Systems Biology, Integration. 

1   Introduction 

In the mid-twentieth century, measuring functions and behaviors of whole biological 
systems was the way to study biology because of the lack of knowledge and tools to 
address molecular questions [1, 2]. Classical systems biology led to the study of 
global phenomena such as growth, development or the influence of a given compound 
on the behavior of a cell, an organism, a population or even an ecosystem. With the 
development of molecular biology and the associated biotechnological methods, 
studies led first to the understanding of specific molecular events, for example the 
function of a single gene or a protein, the interactions between a few molecules or 
between domains of two molecules or the identification of the catalytic site of a given 
enzyme. The last decades have seen the adaptation of classical molecular biology 
methods to high-throughput scale, spanning from genome sequencing, gene 
                                                           
* Corresponding author. 
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expression analysis with microarrays, protein contents analysis with 2D gels 
electrophoresis and mass spectrometry, protein interactions analysis with yeast-2-
hybrid technology [3] as well as large-scale screens using perturbation methods such 
as RNAi, chemicals or GFP-tagged protein expression. These large-scale approaches 
produce quantitative profiles of complete systems, requiring the use of adapted 
informatics tools for data sorting, comparison and modeling, amongst others. As a 
result of the technological development of high-throughput methods in biology, the 
scientific community is now presented with a growing collection of very 
heterogeneous types of data, whose integration should enable correlations with 
systems behaviors and functions. 

2   Data Types and Standards 

Qualitative biological information has been gathered in major widely used databases, 
containing catalogues of nucleotide sequences for multiple organisms (EMBL-BANK 
[4], GenBank [5]), genomes and the respective catalogues of genes (EnsEMBL [6]), 
proteins (UniProt [7]), protein identifications (PRIDE [8]), protein interactions 
(IntAct [9]), enzymes and their substrates (IntEnZ [10], Brenda [11]), carbohydrates, 
lipids or small chemical entities (ChEBI [12]), and many more. Supported by the use 
of the Internet, hundreds of laboratory-based databases share their contents online, 
most of them containing often very specific biological information. In addition, the 
design of these resources often corresponds to a particular need of the laboratory, 
making them difficult to exploit outside their original context. Recently, infrastructure 
developments have been driven by the need to open high-throughput biotechnologies 
to the wider community. Databases have been set up to collect and store large 
quantitative information resulting from high-throughput experiments, such as gene 
expression (ArrayExpress [13]), reaction kinetics (SABIO-RK [14]) or cellular 
phenotypes (MitoCheck [15]) amongst others. Alternative databases are used to store 
more elaborated information such as molecular reactions including metabolic and 
signal transduction pathways (Reactome [16], BioCyc [17], KEGG [18]). A variety of 
computational models of pathways is also available in the Biomodels database [19]. 
Scientific literature is also referenced in databases such as PubMed or CiteXplore, 
enabling single queries but also automated mining of the literature information such 
as iHOP [20]. The availability of qualitative and quantitative biological data in a 
digital format enables computed mining of the databases for various types of 
information. However, because of the use of various data formats and identifiers, the 
comparison and analysis of similar data types, such as genes or protein sets, 
originating from different sources is often laborious and impairs any further 
integration across different levels of analysis, such as protein function or gene/protein 
networks. Recent domain-specific recommendations for experimental data reporting 
comprise the minimum information about a microarray experiment  (MIAME) [21], 
the minimum information about a proteomics experiment (MIAPE) [22], the 
minimum information required for reporting a molecular interaction experiment 
(MIMIx) [23], and the minimum information requested in the annotation of 
biochemical models (MIRIAM) [24]. Community standard data formats include the 
PSI MI format for molecular interactions [25],  as well as BioPAX [26] and SBML 
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[27] for pathways representation. However, integration of minimum reporting 
requirements and community standard data formats across domains is still at an early 
stage, piloted by the MIBBI (mibbi.sf.net) and FuGe [28] initiatives, respectively 
(Table1). These recent initiatives towards defining standards to annotate biological 
information with dedicated ontologies should, if adopted by the scientific 
communities, enable the integration of newly produced datasets [29]. However, 
beyond the use of common standards to format individual datasets, there is a need for 
sophisticated informatics platforms to enable mining data across various sources, 
formats and types. 

Table 1. Examples of databases referred-to in the text 

Nucleotide Sequences EMBL-BANK www.ebi.ac.uk/embl

Genomes Ensembl www.ensembl.org

Proteins UniProt www.ebi.uniprot.org

Protein identification PRIDE www.ebi.ac.uk/pride

Enzymes IntEnz www.ebi.ac.uk/intenz

Enzymes Brenda www.brenda.uni-koeln.de

Small chemical entities ChEBI www.ebi.ac.uk/chebi

Curated human pathways Reactome www.reactome.org

Pathway/Genome Databases BioCyc biocyc.org/metacyc

Kyoto Encyclopedia of Genes and

Genomes

KEGG www.genome.jp/kegg

Gene expression datasets Array Express www.ebi.ac.uk/arrayexpress

Protein interaction IntAct www.ebi.ac.uk/intact

Reaction Kinetics SABIO-RK sabiork.villa-bosch.de

Cellular phenotypes MitoCheck www.mitocheck.org

Biological Models BioModels www.ebi.ac.uk/biomodels

Literature CiteXplore www.ebi.ac.uk/citexplore

Literature PubMed http://www.pubmed.gov/  

3   The ENFIN Platform: Integrating Tools and Data 

With a multidisciplinary consortium of 20 laboratories specialized in mathematics, 
computer sciences and biology, the European Network of Excellence ENFIN 
(Experimental Network for Functional Integration, www.enfin.org) develops methods 
and bioinformatics tools integrated in a common platform, divided mainly into four 
domains of analysis that are: prediction of protein function and protein interaction, 
network reconstruction and modeling. The bioinformatics tools developed in each 
domain of analysis are challenged on specific research projects. The Network 
maintains internally close collaboration between experimental and computational 
research, enabling a permanent cycling of experimental validation and improvement 
of computational prediction methods (figure 1). The toolbox EnSUITE, a provision of 
analysis tools developed and tested within ENFIN can be used as stand-alone 
products, but we aim at generating a series of web services that can serve as modules 
for workflow management software such as Taverna [30] or the one developed within 
ENFIN: EnVISION. Because of the diversity of research domains within ENFIN, 
bridging data types across different sources is a key issue which is addressed through  
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Fig. 1. The integrating structure of ENFIN. The EnCORE platform enables querying through 
series of different databases available as Webservices. The enXml file format allows the 
storage of the intermediate information collected during the query (documentation available at: 
www.enfin.org/encore-info). The analysis platform generates computational predictions, which 
will be integrated via the EnDICTION database. 

EnCORE, a platform aimed at querying through various databases, thereby enabling 
data analysis and integration across different disciplines. Equipped with EnCORE, the 
ENFIN integrated platform should ultimately provide the user with a continuous suite 
of predictions tools and models intended for data interpretation beyond the classical 
one-tool/one-result analysis. 

3.1   The EnCORE Platform 

The need for open data access and data integration and combination across multiple 
data types has stimulated a variety of different approaches to solve this problem. Data 
warehouses, such as BioWarehouse [31] or SRS [32], integrate information from 
various resources into one single data storage system. While these approaches offer 
the advantage of a single point of entry and can perform very quick and complex 
queries on the data, they face the problem of frequently changing and growing data 
structures, which require a continuous adaptation and expansion of the system. 
Furthermore as a result of the data-gathering nature of the approach, the integrated  
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data can never be as recent as the data in the original resource. Federated approaches 
avoid these problems by not duplicating the data, but rather allowing access to the 
distributed original data via a common interface or query language. EnCORE follows 
this federated approach, similarly to other projects such as Kleisli [33], Tambis [34] 
and others. The major advantage of the EnCORE system is, that it follows general 
community recommendations (Embrace; http://www.embracegrid.info) using open 
standards (SOAP, WSDL, XML, WS-I Basic Profile 1.0) and well supported 
technologies (JAX-WS, AJAX). Meanwhile EnCORE introduces as little new and 
specialized technologies as possible, such as sophisticated custom query languages 
and structures. Furthermore the EnCORE system is not limited to data retrieval only, 
but can also equally integrate analysis tools and algorithms. The bioinformatics 
community has recently started to provide further web services to address the need for 
language independent programmatic access across distributed data resources and 
analysis tools. However, most services are still focused on single entity operations 
and there is still a lack of interoperability, support of workflows, reproducibility or 
standard interfaces between web services. EnCORE also addresses these issues with 
its standard interface and data exchange format, together with the support of set-based 
operations and an in-document audit trail. The aim of the EnCORE project is  
to integrate an extensive list of database resources and analysis tools in a 
computationally accessible and extensible manner, facilitating automated data 
retrieval and processing with a particular focus on systems biology. Following the 
above requirements, the system is implemented as a growing set of modular  
web services following the Simple Object Access Protocol (SOAP). The use of  
the Web Service Definition Language (WSDL; http://www.ibm.com/developerworks/ 
webservices/library/ws-whichwsdl) in the document/literal-wrapped style (in 
accordance with the WS-I Basic Profile 1.0 specifications (http://www.ws-i.org/ 
Profiles/BasicProfile-1.0.html)) to specify the service interface guarantees 
interoperability. XML as data format ensures open access as well as platform and 
language independence. At the heart of EnCORE is enXml (http://www.enfin.org/ 
encore/schema/documentation/enxml-v1.2.5-documentation.html), the XML schema 
defining the data exchange format between the web services, which provides a 
standardized, light-weight data structure for all EnCORE web services. It describes 
the core components of the ENFIN data model: experiments, sets and molecules. 
Experiments can include both wet lab experimental data as well as bioinformatics data 
transformations performed by EnCORE data retrieval or analysis services, and can 
comprise one or more input and result sets. Sets provide a convenient model to allow 
set-oriented bioinformatics operations on molecules or other sets. Molecules represent 
biological molecules such as proteins, which are traceable through multiple 
conversion steps, even when converting between data types in potentially ambiguous 
ways. EnCORE web services take enXml-schema-conform XML documents as input 
and produce modified documents as output by only adding a new experiment to its 
content describing the service procedure. This method preserves an audit trail, which 
is inseparable from the result and lies within the document itself. This standardization 
of the input and output values of the EnCORE web services also makes it very easy to 
chain the services into workflows by just passing-on the XML document from one  
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service to another. It is up to the service to deal with the presented document content. 
Creating EnCORE workflows using workflow management tools such as Taverna 
becomes a simple task. The development of services has so far focused on databases 
hosted at the European Bioinformatics Institute (EBI), but the flexibility afforded by 
the generic enXml schema to integrate new data types will facilitate the addition of 
non-EBI private and public data sources in the future. EnCORE web services are 
currently available for PRIDE, IntAct, Reactome, UniProt, PICR [35], ArrayExpress, 
and an EnsEMBL based mapping between AffyMetrix probe set IDs and UniProt 
accessions. These services provide information on protein identifications, protein 
interactions, gene expression levels, pathway information, protein annotations, protein 
identifier mappings and probe set ID to protein identifier mapping, respectively.  

The primary recipient will be EnSUITE, the ENFIN analysis layer. EnCORE web 
service interfaces for EnSUITE analysis tools are currently in develomment. All 
current services are implemented in Java using the Java JAX-WS framework, but the 
language independent nature of the system allows for implementations in other 
programming languages and sample applications using EnCORE web services are 
available in Java, Perl, Python and Taverna. The web application EnVISION (http:// 
www.ebi.ac.uk/enfin-srv/envision) has been developed as a more end-user friendly 
interface to the EnCORE web services. It allows any number of services to be applied 
in any order to any enXml document, and for ease of usability it can create an initial 
enXml document from a given set of protein identifiers. It allows easily creating 
workflows involving various data retrieval and conversion steps without the need of 
additional applications or manual programming. EnVISION automatically converts 
the resulting enXml document into a human-readable HTML representation using an 
XSL Transformation script, which can also be used independently from the web 
application. The HTML form of the result also includes out-going links to the 
corresponding source databases (e.g. IntAct for protein interactions, Reactome for 
pathways) and is integrated into the start page of EnVISION, making it a light-weight 
one-page analysis tool. In the future, a new version of this interface, EnVISION II, 
will provide a more sophisticated Java Server Faces (JSF)-based web application with 
the aim to present the data contained in a enXml file in a clear, graphical way easily 
understandable for the user with outgoing links to the source databases for more 
detailed information. EnVISION II will also enable running queries in parallel, 
providing the possibility to start new queries even before earlier ones have returned 
any results. 

As an example of the effectiveness of the EnCORE workflow system, we queried 
EnVISION with a small group of proteins (P22575, Q9UBU9, P06239) co-
immunoprecipitated in an experiment described by Yoon et al. [36]. The proteins 
were shown by the IntAct database to interact with members of the T-cell signaling 
pathway, such as LAT and ZAP70. Data from Reactome further suggested a role in 
viral infectivity and life cycle and also an involvement of the proteins in mRNA 
processing. Data in PRIDE showed that many of proteins had been identified in 
samples from Jurkat T-cells. All of this information corroborates the observations of 
Yoon et al. who were investigating a novel Tip-associated protein (P22575) from 
Herpesvirus saimiri, which was shown to infect T lymphocytes and act as a mediator 
of T-cell transformation (Fig. 2). 
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Fig. 2. Example of workflow in EnVISION 

3.2   Extending the Reach of EnCORE 

The ENFIN registry of databases. A major issue for both bench scientists and the 
EnCORE team is the wide diversity of databases resources available in biology. To 
extend the scope of EnCORE and EnVISION beyond its core database set it will be 
necessary to collect a set of trusted databases relevant to systems biology that can be 
integrated into the system. The ENFIN consortium is therefore constructing a registry 
of systems biology databases that will act as a resource both to the EnCORE team and 
the systems biology community as a whole. Various attempts are being made to 
collect online lists of useful databases. A well-known example is the Nucleic Acids 
Research listing (http://www.oxfordjournals.org/nar/database/c) although this is 
relatively limited and broader in scope than the ENFIN Registry. An example of an 
online resource offering links to and information specifically about systems biology 
databases is Pathguide (http://www.pathguide.org/) [37]. This provides information 
on 240 databases related to systems biology, with a focus on proteins. The ENFIN 
Registry will lie between these resources in scope (for example only 19 of the 
resources currently on the Registry list are on Pathguide). Further, it aims at playing a 
distinct role by facilitating the integration of information in these databases rather 
than simply providing a useful user resource. In collaboration with another EU 
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project, CASIMIR (Coordination and Sustainability of International Mouse 
Informatics Resources, www.casimir.org.uk) a specification is being developed for an 
information set that needs to be collected about databases to achieve this aim. This 
includes which (if any) ontologies are used for data annotation, and the types and 
specifications of any web services resources make available. The ENFIN registry, 
which will allow direct programmatic access, has the potential to serve as a repository 
of information that can be queried directly by EnVISION or other front ends. At the 
date of writing, the ENFIN registry list contains 60 databases and continues to be 
added to by members of the consortium. The database itself is under development in 
collaboration with a parallel database being developed by CASIMIR. 
 
The EnDICTION database for predictions. A growing number of biological 
predictions are being generated within the “Analysis Platform” by the ENFIN 
consortium. We have chosen to start the development of  this database with data of 3 
types: protein interaction, protein function and sets of target genes. EnDICTION will 
enable the integration of such computational predictions with public databases 
available via the EnCORE platform. The data model in EnDICTION is based on the 
one used by the Reactome database (www.reactome.org), and consists of additional 
SQL tables designed to accommodate the 3 types of data proceeding from the ENFIN 
Analysis Platform. In EnDICTION, instances from a particular protein-protein 
interaction, list of target genes or functional attributes are referenced to their 
counterpart reaction in Reactome. An initial test case was performed where input of 
raw protein-protein interaction data for EnDICTION were obtained from an ENFIN 
partner and converted into the XML-derived standard PSI-MI. XML-formatted data 
were transformed into in-house Reactome-XML and were incorporated into the 
ENDICTION database. New relationships between entities were obtained from 
inference between already existing data and the newly incorporated. A specific field 
containing statistical measures of confidence for computational predictions is created 
for each batch of input data included in EnDICTION. At the end of the process, both 
curated Reactome and predicted ENFIN data are available seamlessly for the query. 
In the future, a graphical interface will allow overlaying reactions from Reactome 
with predicted functional interactions. In the context of the ENFIN project, 
EnDICTION will be adapted to store several annotated sets of predictions from 
different sources, compare them with the results of different experimental settings, or 
integrate results obtained using different technologies. 

4   Perspectives 

Enabling the integration of data from various sources, especially from small and 
middle-size laboratories is one of the concepts driving the ENFIN Network of 
Excellence, to further our understanding of biology through tight horizontal 
integration of data domains and vertical integration of databases, prediction systems, 
and experimental validation. Based on an open data integration platform, ENFIN 
development cycles will iteratively improve the quality of computational predictions 
through experimental validation, and will improve public resources through the 
provision of high quality systems biology models as well as supporting experimental 
findings.  
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Abstract. We present a system for ontology based annotation and indexing of 
biomedical data; the key functionality of this system is to provide a service that 
enables users to locate biomedical data resources related to particular ontology 
concepts. The system’s indexing workflow processes the text metadata of 
diverse resource elements such as gene expression data sets, descriptions of 
radiology images, clinical-trial reports, and PubMed article abstracts to annotate 
and index them with concepts from appropriate ontologies. The system enables 
researchers to search biomedical data sources using ontology concepts. What 
distinguishes this work from other biomedical search tools is:(i) the use of 
ontology semantics to expand the initial set of annotations automatically 
generated by a concept recognition tool; (ii) the unique ability to use almost all 
publicly available biomedical ontologies in the indexing workflow; (iii) the 
ability to provide the user with integrated results from different biomedical 
resource in one place. We discuss the system architecture as well as our 
experiences during its prototype implementation (http://www.bioontology.org/ 
tools.html). 

Keywords: ontology-based annotation, biomedical data integration, biomedical 
ontologies, semantic expansion, concept recognition. 

1   Introduction 

The emergence of information and communication technologies has drastically 
changed biomedical scientific processes. Experimental data and results today are easy 
to share and repurpose thanks to the Web and public application programming 
interfaces (APIs) enabling connection to databases containing such information. As a 
consequence, the variety of biomedical data available in the public domain is now 
very diverse and ranges from genomic-level high-throughput data to molecular-
imaging studies to published research articles. The paradox of such an expansion is 
that biomedical researchers now face the problem of extracting the specific data they 
need. Measures must be taken to prevent this problem from worsening as data 
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repositories grow fast1. Biomedical researchers have turned to ontologies and 
terminologies to describe their data and turn it into structured and formalized 
knowledge. For instance, the Gene Ontology2 (GO) is widely used to describe the 
molecular functions, cellular location and biological processes of gene products as 
well as integrate these descriptions across several databases. 

However, most publicly available biomedical data are unstructured and rarely 
described with ontology concepts available in the domains. This wealth of publicly 
accessible biomedical data is beginning to enable cross-cutting integrative 
translational bioinformatics studies [1][2]. In order to develop integrative translational 
bioinformatics approaches to interpret these datasets, there is a strong and pressing 
need to be able to identify all experiments that study a particular disease. A key query 
dimension for such integrative studies is the sample, along with a gene or protein 
name. As a result, besides queries that identify all genes that have a function X – 
which can be reliably answered using GO – we need to conduct queries that find all 
samples/experiments that study a particular disease and/or the effect of an 
experimental agent. However, translational discoveries that could be made by mining 
biomedical resources are hampered because they lack standard terminologies and 
ontologies to describe their elements (i.e., diagnoses, diseases, samples, and 
experimental conditions). For example, a researcher studying the allelic variations in a 
gene would want to know all the pathways that are affected by that gene, the drugs 
whose effects could be modulated by the allelic variations in the gene, and any 
disease that could be caused by the gene, and the clinical trials that have studied drugs 
or diseases related to that gene. The knowledge needed to study such questions is 
available in public biomedical resources; the problem is finding that information. 

The challenge is to create consistent terminology labels for each element in the 
public resources that would allow the identification of all elements that relate to the 
same type at a given level of granularity. (e.g., All carcinoma samples versus all 
Adenocarcinoma in situ of prostate samples, where the former is at a coarser level of 
detail). These resource elements range from experimental data sets in repositories, to 
records of disease associations of gene products in mutation databases, to entries of 
clinical-trial descriptions, to published papers, and so on. One mechanism of 
achieving this objective is to map the text metadata describing the diagnoses, 
pathological state and experimental agents applied to a particular sample to ontology 
concepts allowing us to formulate refined or coarse search criteria. Creating ontology-
based annotations from these resource elements metadata will enable end users to 
formulate flexible searches for biomedical data [3][4][5][6][7]. Therefore, the key 
challenge is to automatically and consistently annotate the biomedical data resource 
elements to identify the biomedical concepts to which they relate. 

In this paper, we present a system for ontology-based annotation, which enables 
users to locate biomedical data related to particular ontology concepts in the 
BioPortal3 ontology repository. The system’s indexing workflow processes the text  
 
                                                           
1 For example, in February 2007, the Gene Expression Omnibus (GEO) had 369 data sets; in 

the March 2007 release, the number of data sets increased to about 1500 and is now, in 
February 2008, around 2085 data sets. 

2 www.geneontology.org/ 
3 www.bioontology.org/tools/portal/bioportal.html 
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metadata of several biomedical resource elements to annotate (or tag) them with 
concepts from appropriate ontologies and create an index to access these elements. As 
described in the following sections, the tagging is done with a concept recognition 
tool and the final index takes into accounts the ontology semantics that link concepts 
to one another (e.g., is_a relation). Our system creates an ontology-based index that 
can be used by existing search engines (such as Entrez, BioNavigator) to retrieve 
results that are complementary to the ones found with keyword based approaches. 
What distinguishes our system is: (i) the use of ontology semantics (ii) the ability to 
use almost all publicly available biomedical terminologies such as the Unified 
Medical Language System (UMLS) ontologies as well as Open Biomedical 
Ontologies, in the indexing workflow; (iii) the ability to provide the user with 
integrated results from different biomedical resource in one place. In the rest of the 
paper, Section 2 introduces the system architecture Section 3 gives an example on a 
GEO dataset. Section 4 presents our implemented prototype and the integration of its 
results in BioPortal. Section 5 concludes. 

2   System Architecture 

In this section we describe the system architecture consisting of different levels  
(Fig. 1). At the resource level, public biomedical resources (such as GEO and 
PubMed) are composed of elements that represent an abstraction for the unit of 
storage in theses databases. An element is identifiable and can be linked by a specific 
URL/URI (id), and it has a structure that defines the metadata contexts for the element 
(title, description, abstract, and so on). Our system retrieves4 and downloads (through 
specific access tools) the element text metadata from resources, and keeps a track 
from both the original metadata context and element id. At the annotation level, the 
system uses a concept recognition tool called mgrep (developed by Univ. of 
Michigan) to annotate (or tag) resource elements with terms from a dictionary. The 
dictionary is constructed by including all the concept names and synonyms from a set 
of ontologies available at the ontology level. The annotation process is context aware, 
and keeps track of the context (such as title, description) from which the annotation 
was derived. The results are stored as annotation tables. An annotation table contains 
information such as “element E was annotated with concept T in context C”. 

At the index level, a global index combines all the annotation tables and indexes 
annotations according to ontology concepts. The index contains information such as: 
“Concept T annotates elements E1, E2, ...”.  

The system also uses relations provided at the ontology level to expand the 
annotations. This is the first step of the semantic expansion. For example, using the 
is_a ontology relation, for each annotation, we create additional transitive closure 
annotations according to the parent–child relationships subsumed by the original 
concept. For instance, if a resource element such as a GEO protein expression study is 
annotated with a concept from the ontology National Cancer Institute Thesaurus 
(NCIT), e.g., pheochromocytoma, then a researcher can query for retroperitoneal 
neoplasms and find data sets related to pheochromocytoma. The NCIT provides the  
 

                                                           
4 We use public API such as Web Services or structured XML documents. 
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Fig. 1. The system architecture comprising of different levels. See main text for details. 

knowledge that pheochromocytoma is_a retroperitoneal neoplasms. This first step is 
done offline because, processing the transitive closure is very time consuming – even 
if we use a pre-computed hierarchy – and will result in prolonged response times for 
the users. This use case is similar, in principle, to query expansion done by search 
engine like Entrez; however, Entrez does not use ontologies, therefore, there exists 
pheochromocytoma related GEO data sets, but none show up on searching for 
retroperitoneal neoplasms in Entrez. In our system, however, a researcher could 
search for retroperitoneal neoplasms and find the relevant samples [1]. 
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At the user level, on searching for a specific ontology concept, the results provide 
resource elements found directly or via the step of semantic expansion. A query 
module performs the second step of semantic expansion i.e., expanding the user query 
using the knowledge ontologies provide. This module also selects and filters the 
appropriate annotations according to the user choices transmitted by the user 
interface. The semantic expansion is therefore be done both off line (e.g., such as with 
the is_a transitive closure) or at run time, interacting with the user and using other 
techniques [8], such as semantic distance [9][10]. The user receives the result in terms 
of references and links (URL/URI) to the original resource elements. 

Remark: This architecture illustrates the generalizability of our implementation. Note 
the same model could be applied for domains other than biomedical informatics. The 
only specific components of the system are the resource access tools (which are 
customized for each resource) and, of course, the ontologies. 

3   Example Demonstrating the Processing of a GEO Dataset 

A GEO dataset represents a collection of biologically – and statistically – comparable 
samples processed using the same platform. We treat each GEO dataset as a resource 
element whose metadata we aim to process. Each GEO dataset, has a title and a 
summary context that contain free text metadata entered by the person creating the 
dataset. Consider for example the GEO dataset ‘GDS1989’. This dataset is available 
online5 and can be retrieved using the EUtils API.6 GDS1989’s title is: Melanoma 
progression. GDS1989’s summary contains the phrase: melanoma in situ. Our set of 
ontology contains, for instance, the Human disease ontology,7 and the concept 
Melanoma is in our system’s dictionary as it is one possible term for the concept 
DOID:1909 in this ontology. Therefore, our concept recognition tool produces the 
following annotations:8 

Element GDS1989 annotated with concept DOID:1909 in context title; 
Element GDS1989 annotated with concept DOID:1909 in context summary; 

The structure of the Human disease ontology shows that DOID:1909 has 36 direct 
or indirect parents such as for instance DOID:169, Neuroendocrine Tumors and 
DOID:4, Disease, therefore the transitive closure on the is_a relation generates, for 
instance, the following annotations: 

Element GDS1989 annotated with concept DOID: 169 with closure; 
Element GDS1989 annotated with concept DOID:4 with closure; 

Searching for “melanoma” in BioPortal returns 109 matches9 in the Human disease 
ontology including concept DOID1909. The user can access the 13 ArrayExpress 
                                                           
5 www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=1989 
6 www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html 
7 http://diseaseontology.sourceforge.net/ 
8 Note these two annotations involve only one annotating concept. 
9 BioPortal uses an Apache Lucene index provided by LexGrid (http://informatics.mayo.edu) to 

find the query related ontology concepts. 
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experiments, or the 673 clinical trials, or the 960 articles in PubMed and the 10 GEO 
datasets related to that concept. 

4   Integration with NCBO BioPortal 

The National Center for Biomedical Ontology (NCBO) [11] develops and maintains a 
Web application called BioPortal to access biomedical ontologies. This library contains 
a large collection of ontologies, such as GO, NCIT, International Classification of 
Diseases (ICD), in different formats (OBO, OWL, etc.). Users can browse and search 
this repository of ontologies both online and via a Web services API. 

We have implemented the first prototype of the system as presented in section 2. 
We have written a set of Java access tools to access five resource databases. 
Resources processed and the numbers of annotations currently available in our system 
index are presented in Table 1. A public representational state transfer (REST) 
services API [12] is available to query the annotation index and returns XML 
documents describing the annotations. We have used this API to integrate the system 
with BioPortal as illustrated by Fig. 2. 

In our prototype, we have processed: (1) high-throughput gene-expression data sets 
from GEO and Array Express, (2) clinical-trial descriptions from Clinicaltrials.gov, 
(3) captions of images from ARRS Goldminer, and (4) abstracts of articles published 
in PubMed. Table 1 shows both the current number of elements annotated and the 
number of annotations created from each resource that we have processed. Our 
prototype uses 48 different biomedical ontologies that give us a dictionary of 793681 
unique concepts and 2130700 terms. As a result of using such a large number of 
terms, our system provides annotations for 99% of our subset of PubMed, and 100% 
of the other processed resources. The average number of annotating concepts is 
between 359 and 769 per element, with an average of 27% of these annotations being 
direct. In the current prototype, concept recognition is done using a concept  
recognition tool developed by National Center for Integrative Biomedical Informatics   
 

Table 1. Number of elements annotated from each resource in the current prototype 

Resource Number 
of 
elements 

Resource 
local size 
(Mb)

Number of 
direct 
annotations
(mgrep 
results) 

Total
number of 
'useful'11

annotations

Average 
number of 
annotating
concepts 

PubMed (subset) 
www.ncbi.nlm.nih.gov/PubMed/

1050000 146.1 30822190 174840027 160 

ArrayExpress 
www.ebi.ac.uk/arrayexpress/

3371 3.6 502122 1849224 525 

ClinicalTrials.gov 
http://clinicaltrials.gov/

50303 99 16108580 48796501 824 

Gene Expression Omnibus 
www.ncbi.nlm.nih.gov/geo/

2085 0.7 165539 772608 359 

ARRS GoldMiner (subset) 
http://goldminer.arrs.org

1155 0.5 134229 662687 564 

TOTAL 1106914 249.9 47732660 226921047 (avg)486.4  
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Fig. 2. User interface within BioPortal. In this view, a user browsing the NCIT in BioPortal, 
can select an ontology concept (in this case, Hepatocellular carcinoma) and see immediately 
the numbers of online resource elements that relate directly to that concept (and the concepts 
that it subsumes). The interface allows the user to directly access the original elements that are 
associated with Hepatocellular carcinoma for each of the indexed resources. 

(NCIBI) called mgrep. 10We rely on this tool which reported a very high degree of 
accuracy (over 95%) in recognizing disease names [13]. The prototype design of the 
annotation level is such that we can plug-in other concept recognizers. The prototype 
is available online http://alpha.bioontology.org/. 

5   Conclusion 

In this paper, we have described the prototype implementation of an ontology-based 
annotation system. The system’s objective is to annotate (offline) a large number of 
biomedical resources and to provide an index up to date of annotated resources 
elements. We use ontologies (and not simply terminologies) both for annotation as 

                                                           
10 We have conducted a comparative evaluation of this tool with the gold standard in the 

biomedical community, MetaMap [14]. It has a higher precision in recognizing concepts, 
and it is more scalable as well as open to outside dictionary (not tied to the UMLS structure 
as MetaMap is.). 
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well as semantic expansion of the annotations. The NCBO hosts one of the largest 
library of biomedical ontologies and our system allows a user to search for various 
biomedical data related to a specific ontology concepts in one place; greatly 
enhancing the value of the ontology repository. Our system can process text metadata 
of gene-expression data sets, descriptions of radiology images, clinical-trial reports, as 
well as abstracts of PubMed articles to annotate them automatically with concepts 
from appropriate ontologies. It promotes biomedical translational research by 
enabling users to locate relevant biological data sets and to integrate them with 
clinical data to bridge the bench-to-bedside gap. 

We believe that as we expand the system with additional ontologies and process 
additional biomedical resources, we will serve an even wider user population, 
broadening the reach and impact of the NCBO in enabling translational research. 
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Abstract. The Bio2RDF project uses a data integration approach based on 
semantic web rules to answer a broad question: What is known about the mouse 
and human genomes? Using its rdfizing services, a semantic mashup of 65 
million triples was built from 30 public bioinformatics data providers: GO, 
NCBI, UniProt, KEGG, PDB and many others. The average link-rank (ALR) of 
a node is 4.7 which means that a usual topic is connected to 4.7 other topics by 
direct or reverse links within the warehouse. A knowledge map of the graph and 
descriptive statistics about its content are presented.  A downloadable version of 
the Bio2RDF Atlas graph in N3 format is available at http://bio2rdf.org/ 
download. 

1   Introduction 

According to Davidson [1] the objective of data integration is to make data distributed 
over a number of distinct, heterogeneous databases accessible via a single interface. 
Such data integration has been identified as a vital task in the life science domain for 
more than 20 years and now we are beginning to see promising approaches being 
delivered; the semantic web based on the RDF model is one of them. RDF (Resource 
Description Framework)1 is a metadata model proposed as a standard, by the W3C, to 
build the emerging semantic web. The Bio2RDF project's main goal is to provide a 
data integration service to help biologists understand the mechanisms of life and 
efficiently exploit the vast amount of publicly available data over the web. Applying 
the semantic web linked data2 approach is its strategy. The DBPedia [2] project uses a 
map to represent relations between its many linked data sources. Now, if we were to 
draw a map of the existing relations between linked data from bioinformatics database 
providers, what would it look like?  Could we measure the amount of post genomic 
knowledge available related to a mouse or human genome sequence?  Could it help 
answer the what is known question? 

For centuries, maps were essential to give a global representation of a complex  
and vast reality: our little planet. The explosion of post-genomic knowledge is a 

                                                           
1 http://www.w3.org/RDF/ 
2 http://www.w3.org/DesignIssues/LinkedData.html 
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consequence of the complete genome sequence being made available after years of 
DNA sequencing. This scientific accomplishment was possible because genetic maps 
built of markers existed years before the sequencing began. The 1041 micro-satellite 
markers of the 1993-1994 Genethon linkage map [3], positioned with odds greater 
than 1000:1 and distributed over the 23 chromosomes greatly helped the building of 
the other maps, the hybrid radiation map and the physical one. All these maps were 
then used to finish the complete genome sequencing project.  Without the genetic 
framework map, the big picture would have been harder or impossible to assemble.  
What will the framework map be for the successful assembly of the atlas of post-
genomic knowledge? Just as we did with the genetic maps, we need a protocol for 
building the knowledge map and some metrics to describe it.  

The bioinformatics community has been actively involved in semantic web 
development since the first Semantic Web for Life Sciences Workshop3. Projects that 
were first presented, for instance YeastHub [4] and the RDF version of UniProt4, have 
shown the way for many other research projects based on RDF, Bio2RDF  [5] being 
one of them. An active community of researchers, members of the HCLS5, has built a 
semantic web demo using the Virtuoso server6.  This project goal is similar to that of 
Bio2RDF: to make available bioinformatics data in RDF format.  Despite these early 
efforts, there are still not enough mature applications to help scientists because of the 
semantic web's slow "creep" into the bioinformatics domain [6] and the lack of a 
naming convention to identify topics [7].  It is still a creepy nation. 

In this paper we present the main results of the Bio2RDF project in addressing the 
problem of data integration in the post genomic era.  We will describe the method that 
was developed to build an RDF graph of 65 million triples, 8 million topics from 30 
different public databases.  In the results section, we will present statistics used to 
draw a knowledge map and we will explain why this unified graph contains more 
knowledge than its parts taken individually. We conclude by proposing future 
research directions. 

2   Semantic Web Ranking 

Measuring the amount of links in the WWW and sorting search results according to 
ranking algorithms have been done successfully with Google’s PageRank [8].  
Applying the same kind of approach to semantic data was done by the Aleman-Meza 
group [9]; we adapted his method to define computable statistics quantifying the 
knowledge within an RDF graph: Openness Ratio, Average Link Rank and Semantic 
Weight. 

 

Openness Ratio. In a relational database a key not defined within the database cannot 
be referenced; it is the closed world assumption.  According to the open world 
assumption7, a corner stone of semantic web architecture, we can link objects together 
even if we are not sure that destination location exists: RDF graphs can reference 
                                                           
3 http://www.w3.org/2004/07/swls-ws.html 
4 http://dev.isb-sib.ch/projects/uniprot-rdf/ 
5 http://www.w3.org/2001/sw/hcls/ 
6 http://virtuoso.openlinksw.com/wiki/main/ 
7 http://en.wikipedia.org/wiki/Open_world_assumption 



 Bio2RDF : A Semantic Web Atlas of Post Genomic Knowledge 155 

undefined URIs. How can we describe the openness of an RDF graph? How can we 
measure the fact that this database contains many URIs external to its own domain? 
We need a connectivity measure at the domain level to measure this type of 
interrelation.  A collection of topics (html documents converted to RDF) is a graph 
whose subject (Subj) URIs all belong to the same namespace: geneid for example. We 
define the Openness Ratio (OR) of a graph as the proportion of destination URIs 
(objects of type resource |ObjRes|) which are not also defined within the graph.  OR is 
defined by a normalized difference of cardinality of these two sets and varies between 
0 and 1:  

 

 
(1) 

A closed database like the MeSH medical vocabulary has an OR of 0 because it does 
not contain any reference to external databases, all ObjRes are also Subj.  At the 
opposite, OR of Entrez Gene is 1, meaning that all topics contain only URI’s outside 
the geneid namespace which make this domain highly open to the external world.  
 
Average Link Rank.  How can we now describe the connectivity at the topic level?  
We define the link rank (LR) as the sum of inbound links (IL) and outbound links 
(OL) for a specific topic.  OL is the number of objects of type resource in the topic 
graph.  IL is the number of topics pointing to it. OL is defined by the topic’s object 
list URIs; IL can only be evaluated by counting topics referring to it and, to do so, the 
whole global graph needs to be crawled.  Before we calculate the Average Link Rank 
(ALR) for all topics of a graph, a correction needs to by applied to OL; the (1-OR) 
factor removes all OL not defined within the graph.  Finally, to compute ALR, we 
compute IL and OL individually for each subject, we apply the openness correction 
and we divide by the number of topics (|Subj|). 

 

 

(2) 

OL of geneid:15275 topic is 234, but it is impossible to compute IL before the 
mashup is constructed; in the actual Atlas version its IL is 10.  In bioinformatics, IL is 
analogous to the reverse link defined by KEGG’s LinkDB [10].  Obtaining the list of 
reverse links to a specific document is made easy when RDF data is loaded into a 
triplestore. 
 
Semantic weight.  Heterozygosity refers to the fraction of individuals in a population 
that are heterozygous for a particular locus. This ratio is critical in linkage analysis, 
the higher it is, the higher the genetic information content needed to help order a set 
of genetic markers.  It is a measure of genetic information. Could we have a similar 
indicator to measure the potential of knowledge inside a graph?  Our main hypothesis 
is that knowledge is present in the edges of the RDF graph.  We express this as the 
semantic weight of the graph (SW), the number of relations between two topics in the 
graph.  
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(3) 

According to this equation, SW is proportional to ALR. To augment the value of SW 
we must add new topics, and maximize ALR. To do so, we must minimize OR.   

3   Materials and Methods 

Selection of the 30 data sources used to build the mashup was done according to three 
criteria: 1) the database needs to be public, no restriction about data usage should be 
imposed; 2) the database namespace should be popular among the scientific 
community, for example go, pubmed, uniprot and omim; 3) the database should 
belong to one of these data categories: model organism domain, gene or protein 
annotation and homology, literature, pathway or chemical.  The complete list of data 
sources with links to reference and copyright is available online in Freebase8. 

The Bio2RDF project uses the Sesame9 version 1.2.5 triplestore with a MySQL 
backend repository. Only the relational database implementation could scale to 
accomodate 65 million triples. Even with current RDF technology, loading millions of 
triples in the same triplestore is not simple. Once the 30 repositories were individually 
loaded in separate repositories, their content was moved into the final global graph. 
We have developed an N3 format extraction program that uses the MySQL backend 
to extract triples; without this hack, merging all the graphs together would not have 
been possible. SQL queries are used to compute IL and OL statistics for each topic 
and to obtain the cardinality of the needed sets. 

4   Results 

All the high quality graphics in this section were produced using IBM’s Many Eyes10 
free visualization service; they can be viewed interactively11 and the corresponding 
data set can be downloaded12. Once each data source was stored in its own distinct 
graph, we count the triples whose object referred to external namespaces.  The 30 
rdfized data sources access 225 different namespaces. Figure 1 illustrates the 
connectivity between them, each namespace being a node. The MGI and HGNC 
official gene list resources are highlighted; they are naturally located in the center of 
the graph because of high OR.   

Figure 2 illustrates the same namespace to namespace relationship from a different 
perspective; it shows the proportion of triples linked to an external topic from each of 
the 30 data sources. Each color band represents an origin namespace. Bigger circles 
belong to popular namespaces, the ones frequently used for annotation: genbank,  
 
                                                           
 8 http://bio2rdf.org/atlas/sources 
 9 http://www.openrdf.org/ 
10 http://services.alphaworks.ibm.com/manyeyes/home 
11 http://bio2rdf.org/atlas/map 
12 http://bio2rdf.org/atlas/statistics 
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Fig. 1. Bio2RDF map of post-genomic knowledge about human and mouse 

 

Fig. 2. Bubble chart of InboundLink connectivity between the 225 namespaces 

uniprot, etc. We can see that the pubmed namespace is used within 10 different 
domains. 

We can also analyze the structure of each RDF topic by namespace at the graph 
level. Figure 3 illustrates the average size of the RDF graph associated with each 
subject (topic) in terms of number of triples by subject, literal length by subject and 
the global OR of the namespace. Those three variables were chosen because they 
describe three different aspects of the semantics of the graph: 1) the size of the 
document (triples by subject); 2) the quantity of text (total literal length by subject; 3) 
the connectivity between namespaces (OR). 
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Fig. 3. Descriptive statistics for each of the 30 rdfized data sources 

The distribution of the dots in this scatterplot should be familiar to someone 
working with bioinformatics databases. With an OR of 0.58, the Bio2RDF Atlas has a 
lower OR than the majority of domains. The biggest dots correspond to omim, 
genbank and biocarta, three very literate resources. The domain with the biggest 
topics are ec and  prosite.   

The whole graph is made available to the life science community. The uncom-
pressed file of 9 gigabytes in N3 format can be downloaded13.  Data is made available 
in respect to the original license agreement of each data source provider. Bio2RDF 
original work is published according to a Creative Commons license. 

5   Discussion 

In the introduction, we made the statement that there is more knowledge in the whole 
mashup than in all the graphs taken separately. We can now say that the knowledge 
available in the global graph is higher with 65 million triples merged together.  The 
final Atlas graph OR is 0.58 and its ALR is 4.7.   This means that the 8 million topics 
are connected together by 18.8 millions ((8 x 4.7)/2) relations but also that 58% of all 
destination URIs are not defined within the Atlas. 

Back to our initial hypothesis about knowledge being in the graph, we now propose 
an explanation.  The graph is composed of RDF documents interrelated by URIs; 
when the graph contains many links to external data sources, OR is near 1.  When an 
RDF warehouse built from different databases is constructed, if its OR is near 0 it 
means that we have created a closed world database. By merging interrelated graphs 
together  into a mashup, we decrease the OR of the global graph and we increase the 
ALR of each individual document by adding new IL to it.  The average OR of the 30 
individual graphs is 0.77 and the OR of the atlas global graph is 0.58; a knowledge 

                                                           
13 http://bio2rdf.org/download 
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gain of 0.19 obtained by the mashup process. The more connected the graph of linked 
topics, the more relations are present from which more knowledge can be inferred 
and, eventually, queried. This is what happens when we build a combined graph of 
many database sources from independent providers, this is why we have built the 
Bio2RDF Atlas. 

‘Critical mass’, ‘symbiosis’ and ‘recombinant data’ are scientific terms used to 
describe complex phenomena in nature, they are now used to describe what is 
observed in the semantic web. Tim Berners-Lee14 considers that the semantic web in 
life science will gain a critical mass that will eventually boost the potential of 
semantic web and linked data technology.  Maybe the critical mass could be measured 
by some metrics like the OR and ALR. Eric Miller15 considers mashup of RDF to be 
recombinant data; he meant that RDF data naturally reorganizes, like alleles in a 
chromosome after a recombination event, without losing functionality.  We believe 
that this auto-organization of information needs URIs to be normalized for the data to 
recombine, like Bio2RDF does.  From this point of view, we consider URIs to be 
knowledge markers, a place where recombining events occur.  Carole Goble [11] 
suggested that there is a mutual benefit, a symbiotic relation in fact, between e-
Science and the semantic web.  On one hand, the Bio2RDF mashup could not have 
been done without the availability of new semantic web tools like Sesame.  On the 
other hand, the life science data domain offers a rich experimental environment to 
build semantic applications because well-annotated, highly connected (OR > 0.8) data 
is available. The Bio2RDF project demonstrates what kind of application can emerge 
from this kind of symbiotic system. 

Querying the 65 million triple graph to answer complex questions is the next step. 
The goal of future work by the Bio2RDF team will be to offer a SPARQL endpoint 
for the Atlas graph and a full text search service. By making the graph available for 
download, we invite the triplestore developers to try their software with this data.  
The current Bio2RDF graph contains a fraction of the linked data available in the 
genomic domain; many billions of triples are waiting for a semantic technology to 
query them with finite resolution time.   

6   Conclusion 

According to Tim Berners-Lee, the inventor of HTML and an enthusiastic proponent 
of the semantic web, life science may provide a killer application for demonstrating 
the usefulness of the semantic web approach.  We certainly agree with that 
affirmation and we believe that such a convincing application could arise from the 
Bio2RDF project. How fast will the scientific community adapt to this new paradigm 
of sharing knowledge using semantic web technologies? How can the existing 
knowledge be intelligently used to help researchers make discoveries? In the 17th 
century, the invention of the telescope opened the door to modern astronomy and the 
vastness of the universe became real; the microscope was the starting point for 
microbiology.  Those devices in the hands of scientists have forged our understanding 

                                                           
14 http://www.bio-itworld.com/newsitems/2005/05/05-19-05-news-Berners-Lee 
15 http://www.bio-itworld.com/issues/2006/june/mashups/ 
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of nature.  How to navigate, sort, discover, zoom in and zoom out in our 21st century 
universe of linked data?  We need appropriate tools to magnify our intelligence, to 
focus our research, to create links between new documents, between new ideas that 
are part of the living web of knowledge shared by the social network of science.  Now 
that a sky of data is available, now that we need to find a lost page in the gigantic 
web, new devices are needed to assist scientists. We have started to map the 
knowledge space of biology, we have a first impression of what the bioinformatics 
nation looks like, the time has come to explore it, the time has come to build the 
knowledgescope. 
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Abstract. The increasing number of on-line accessible biological data
sources has involved a growth of the number and the size of ontolo-
gies. This makes it increasingly valuable to map ontologies each other
to determine which of their concepts are semantically related. Nowa-
days, developed tools are often semi-automatic and require the help of
experts. Determining semantic relations between concepts is a difficult
task, and the problem is still open. Several methods have been proposed
in the literature. Existing tools for mapping concepts usually combine
several methods, called matchers. In this paper, we propose a tool called
OMIE (Ontology Mapping within an Interactive and Extensible environ-
ment) which uses and combines several matchers. OMIE is extensible,
i.e. matchers could be added or inhibited, and is interactive, i.e. experts
could validate or invalidate mappings as well as choose between mapping
specific concepts or mapping the entire ontologies.

Keywords: biomedical and life science ontologies, ontology mapping,
matchers, similarity measures, semantic web, multi-agent systems.

1 Introduction

Ontologies are increasingly used and become important in several areas, includ-
ing life sciences. They are used as basis for interoperability between systems
and for data integration, by providing a common terminology over a domain. In
life sciences, several ontologies have been developed, in order to cover specific
domains, e.g. Gene Ontology (GO), Foundational Model of Anatomy (FMA),
Adult Mouse Anatomy (MA), etc. Most of these ontologies are accessible from
the Open Biomedical Ontologies (OBO) website. These ontologies are mostly
complementary but contain important overlapping.

Nowadays, there is an increase of bioinformatics projects which need to use sev-
eral ontologies related to complementary domains of life sciences. The SAPHIR
project (a Systems Approach for PHysiological Integration of Renal, cardiac and
respiratory functions) [1], is one of them. In order to use the needed ontologies in
an integrated way, ”bridges”, i.e. mappings, between the ontologies must be built.
Mapping two ontologies O1 and O2 means defining semantic relations between
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concepts of O1 and concepts of O2. Mappings are often established manually by
experts, but because of the increase number of life sciences ontologies and the in-
crease of their size, there is a need of automatic (or semi-automatic) mappings. To
infer semantic links between two concepts or terms, severalmethods, called match-
ers, have been proposed, but none of them is able to insure good results alone.
Thus, the often adopted solution is to combine several matchers. In this paper,
we propose an interactive, extensible and distributed tool for automatic and semi-
automatic mapping ontologies. The prototype, called OMIE (Ontology Mapping
within and Interactive and Extensible Environment), uses and combines several
matchers. The matchers generate mapping hypotheses which are then filtered by
series of filters. OMIE is extensible, i.e. matchers could be added or inhibited, and
is interactive, i.e. experts could validate or invalidate mappings and could choose
specific concepts to map, or map the entire ontologies. Furthermore, OMIE offers
to users the possibility to give their feedback on mapping results. Theses feedbacks
are then used to improve the mappings. The prototype is a multi-agent based- sys-
tem and is therefore completely distributed.

The paper is structured as follows: in the next section we relate briefly works
done on ontology mapping in life sciences, then we describe our system OMIE.
The results are illustrated in section four with two biomedical ontologies, namely,
Medical Subject Headings (MeSH) and the Mouse Anatomy (MA). The paper
ends with conclusion and remarks on further works.

2 Related Works

Very few ontology mapping tools are used in the context of biology. PROMPT
[2] is perhaps the most known, since it is a plugin-in of Protégé-2000 [3], the most
popular ontology editor in the community of biologists. In [4], an evaluation of
PROMPT in Protégé-2000 and Chimaera [5] was done on biological ontologies.
Two ontologies were considered: Gene Ontology (GO) and Signal-Ontology (SO).
The conclusion was that both tools are helpful, but not completely satisfactory,
either in their use or in the results they give.

Mapping results depend considerably on methods used for comparing con-
cepts and inferring the semantic relations between them. In the literature, we
can find several proposals of methods for mapping and/or aligning biological
ontologies. Most of them are systematic and devoted in particular ontologies: in
[6] and in [7], they were interested by aligning FMA and GALEN, two represen-
tations of anatomy; in [8], they were interested by aligning mouse and human
anatomies, the Adult Mouse Anatomical Dictionary and the NCI Thesaurus
(human anatomy). Others are more general. In [9], a framework called SAMBO
for mapping and merging biomedical ontologies is presented and compared to
PROMPT and also to FOAM, another well-known ontology mapping tool [10].
Finally, an algorithm for matching life sciences ontologies and based on instances
is proposed in [11]. The authors have suggested the use of data contained in the
data source Ensembl in order to find potential mappings between concepts. Their
method was tested on GO and OMIM ontologies.
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3 OMIE Description

3.1 Functionalities

The functionalities offered by OMIE can be divided into three main categories:

– Query mode: a user may need to map his/her local ontology with a chosen
target ontology semantically closed or to map only a part of his/her local
ontology with a target ontology. To carry out this goal we propose two ways
of mapping: (i) ’concept mapping’ to map merely selected concepts and (ii)
’global mapping’ to map the entire ontology. At the end of the mapping
process, the user has the possibility to give his/her satisfactory level of the
obtained results (feedbacks).

– Admin mode: the administrator may propose specific matchers or filters.
According to the application domain, he/she may fit, deactivate or refine all
application variables (i.e., thresholds, matcher confidences, etc.). To provide
more flexibility to our approach, we propose different matchers and filters at
the beginning of the mapping process. The administrator may change this
standard configuration.

– Expert mode: experts may interact with the system to validate or invali-
date the generated mappings. During the validation process, they are asked
(by the system) for an ’expertise level’, information used in the mapping pro-
cess (see below). They have also the possibility to add mappings by hand.

3.2 The Mapping Process

Given two ontologies O1 and O2, OMIE determines mappings between concepts
of O1 and concepts of O2 using several similarity methods which are of four
types: syntactic, linguistic, structural and semantic. OMIE is a multi-agent-
based system composed of five principal types of agents, each agent having a
specific role (Figure 1):

– Ontology Agents (OA): each ontology agent is associated to one ontology.
The user interacts with these agents to send his/her mapping query which
is then handled by MA agents.

– Matcher Agents (MA): each MA agent calculates a similarity value for each
couple of concepts.

– Hypotheses Generation Agent (HGA): combines the similarity values gen-
erated by the different Matcher Agents and gererates a mapping hypothesis
for each couple of concepts.

– Hypotheses Filtering Agent (HFA): its role is to filter the mapping hypothe-
ses sent by HGA agent in order to eliminate the least valid ones.

– Feedback and Validation Agent (FVA): interacts with the user for the vali-
dation of the mapping hypotheses.

The system is completely distributed, and all agents work separately.
The mapping process in OMIE is thus composed of four main steps: Similarity

computation, candidate mapping generation, candidate mapping filtering and
user validation and feedbacks. Each step is performed by a specialized agent.
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Fig. 1. General architecture of the mapping process in OMIE

Similarity computation: OMIE executes multiple independent matchers (each
matcher is implemented by an agent) in order to measure the similarity value be-
tween two given concepts. In this step, two types of matchers are considered: lin-
guistic matchers and syntactic matchers. Matcher agents (MA) work at the same
time and independently. We have chosen and implemented different existing so-
lutions: WordNet for linguistic comparisons and several functions for syntactic
comparisons (String Equality function, Similarity String function, Levenshtein
function, Sub-String Distance function and the Hamming Distance function). For
each considered couple of concepts, each MA agent returns a similarity value (be-
tween 0 and 1). Besides these matchers, experts and administrators may propose
other specific matchers to improve the result’s quality.

Candidate mapping generation: HGA agent collects all similarity values
generated by the different MA agents. It creates a set of possible candidate map-
pings (called hypotheses). Each hypothesis Hp is a tuple < c, d, ConfHp, SVHp >

such as: ConfHp =
∑

i Confhi and SVHp =
�

i Confhi
SVhi�

i Confhi
and where Confhi

and SVhi are respectively the confidence level of the matcher hi and the sim-
ilarity value returned by the matcher hi for the couple of concepts c and d.
Structural (topological) and semantic matchers are here used to propose new
hypotheses and/or improve similarity values of existing hypotheses. HGA ex-
ploits the hierarchical structure and the semantic relations of the ontology, as
well as the mappings already established and validated in previous iterations.
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Candidate mapping filtering: We have developed several methods to filter
hypotheses generated by HGA agent. HFA agent detects and solves incompat-
ibilities between mappings (e.g. when in one hand, two concepts c and d are
mapped and in another hand, a father of c is mapped with a child of d (crossed
mappings)). Thus, if a mapping hypothesis is incompatible with a validated
mapping, it is eliminated; and if two mapping hypotheses are incompatible, the
one having the lowest similarity value is eliminated. Besides, we have defined a
threshold on the similarity value SVHp and on the confidence level ConfHp un-
der which the mapping hypothesis is not considered. Of course, these thresholds
could be changed by the user.

Accurate candidate mapping validation and user feedback recovering:
In this step, FVA agent interacts with the user in order to propose the mapping
hypotheses sent by HFA agent. The user could validate or invalidate each of the
mapping hypotheses. When a mapping is validated, it is stored, and then used
by HGA and FHA agents in order to improve the mapping process (see above).

An important aspect that completes the interactive notion is the user feed-
back. The user can express directly his/her satisfactory level on the obtained
results. We have associated a ”validation level” to each mapping. This valida-
tion level depends on the number of times the mapping has been validated by
users and on the ”expertise level” of the users (given by the users themselves).
The level of expertise is a value between 0 and 1. When this level is set to 1 by
an expert for a given mapping, this would mean that he is completely sure about
the validity of the mapping. Thus, the validation level of a mapping, initially set
to zero, increases with an expertise level at each validation by an expert.

4 Results

OMIE is implemented using the multi-agent platform JADE (Java Agent Devel-
opment Framework). We use OntoBroker system [12] to manage the ontologies.
OntoBroker integrates various input formats of ontologies like RDF(S), F-Logic
or OWL. The different matchers and similarity methods we developed are im-
plemented with logic rules, which make OMIE easily extensible.

A great number of available biomedical ontologies are in OBO format.
Concepts in these ontologies are described with identifiers (e.g., MA 00003,
MA 00005, and so on) and label properties (e.g., organ system). This makes
the mapping impossible if we consider only identifiers. Contrary to Protégé and
PROMPT which browse and map only concept identifiers, OMIE is able to edit
and map both identifiers and labels.

We tested OMIE on several biomedical ontologies. We present here the re-
sults obtained with two ontologies, namely: MeSH (Medical Subject Headings)
ontology [13] and MA (Adult Mouse Anatomy) ontology [14]. These ontologies
cover a similar anatomy context and are developed independently. MeSH is a
controlled vocabulary produced by the American National Library of Medicine
and is used for indexing, cataloguing, and searching for biomedical and health-
related information and documents. It consists of sets of terms or descriptors in
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a hierarchical structure and contains more than 1400 concepts. MA organizes
anatomical structures for the postnatal mouse spatially and functionally, using
’is a’ and ’part of’ relationships. The ontology is used to describe expression data
for adult mouse and phenotype data pertinent to anatomy in standardized ways.
MA ontology contains more than 2400 anatomical concepts. For our experimen-
tation we focused on three categories developed by both ontologies, namely, nose
(with 15 concepts in MeSH and 18 concepts in MA), ear (39 concepts in MeSH
and 77 concepts in MA), and eye (45 concepts in MeSH and 112 concepts in MA).

Fig. 2. OMIE configuration interface

Figure 2 shows the system configuration used in our tests: selected matchers,
confidence level and similarity value threshold associated to each matcher, and
global thresholds (similarity value and confidence level) used in the filtering step.
All our test evaluations are based on the metrics of recall and precision calculated
considering mappings generated by the system and mappings identified manually
by domain expert. In our tests, the domain expert provides 9 mappings between
nose concepts, 27 mappings between ear concepts and 27 mappings between eye
concepts.

We compared the results obtained by OMIE on MeSH and MA ontologies with
the ones obtained by Lambrix and Tan in [9], where they evaluated their ontology
mapping tool SAMBO with two well known and available tools: PROMPT [2]
and FOAM [10]. Figure 3 shows the recall and the precision obtained by each of
the four systems (PROMPT, FOAM, SAMBO and OMIE). We can see that the
precision of OMIE is higher than the ones of PROMPT and FOAM and is equal
to the precision of SAMBO, and that the recall of OMIE is the higher one. For
example, OMIE succeses to generate all mappings provided (manually) by the
domain expert for the ’eye’ concepts.
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Fig. 3. Comparison of mapping results obtained by OMIE, PROMPT, FOAM and
SAMBO on MA and MeSH ontologies

5 Conclusion

We propose in this paper a system, called OMIE, for mapping ontologies, in par-
ticular biological ontologies. This system, implemented under a multi-agent ap-
proach, is distributed and more importantly is interactive and extensible. Thanks
to an ergonomic interface, users can choose between mapping specific concepts
or all concepts of two selected ontologies. They can also validate or invalidate
mappings. Administrators can choose, add or inhibit matchers, i.e. similarity
measure procedures. One of the characteristics of OMIE is the ability to use
dynamically validated mappings in order to improve the mapping process in
generating mappings as well as in detecting wrong mappings. We use several
similarity measure methods of different types: syntactic, linguistic, topological
and semantic. These methods are combined in order to increase the chance of
generating efficiently the mappings. Other methods could be used. Thus, we are
working on developing other matchers. An important one is an instance-based
matcher: two concepts could be mapped if they are associated to sets of data
(sources) or documents which are similar. Like in [15] we propose to use ontol-
ogy instances to enrich the ontology by creating new semantic relations between
ontology concepts, which could be used by HGA agent (semantic matchers) as
well as FVA agent (semantic filters). Finally, we plan to use automatic learning
methods to make more reliable the confidence levels and the similarity value
thresholds associated to each matcher as well as the thresholds of global simi-
larity value and of global confidence level used in the filtering step.

Acknowledgement. This work is supported in part by the National Office
of Research (ANR) Biosys (”SAPHIR” project) and by the regional council of
Essonne” (”POPS” project in the competitive cluster ”System@tic”).



168 A. Bouzeghoub, A. Elbyed, and F. Tahi

References

1. Thomas, S., Abdulhay, E., Baconnier, P., Fontecave, J., Francoise, J., Guillaud, F.,
Hannaert, P., Hernandez, A., Rolle, V.L., Maziere, P., Tahi, F., Zehraoui, F.: Saphir
- a multi-scale, multi-resolution modeling environment targeting blood pressure
regulation and fluid homeostasis. In: Conf. Proc. IEEE Eng. Med. Biol. Society,
pp. 6649–6652 (2007)

2. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology
merging and alignment. In: AAAI/IAAI, pp. 450–455 (2000)

3. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé owl plugin:
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Abstract. With over 80 file formats to represent various chemical attributes, the 
conversion between one format and another is invariably lossy due to informal 
specifications. In contrast, the use of a formal knowledge representation 
language such as the Web Ontology Language (OWL) enables precise 
molecular descriptions that can be reasoned about in a logically valid manner. 
In this paper, we describe a chemical knowledge representation using OWL. 
We demonstrate its utility in querying a new drug repository created from 
PubChem, DrugBank and DBpedia. By leveraging Semantic Web technologies, 
it becomes possible to integrate chemical information at differing levels of 
detail and granularity, opening new avenues for life science knowledge 
discovery. 

Keywords: semantic web, knowledge representation, knowledge engineering, 
ontology, life sciences, question answering, OWL, chemistry, molecule, mashup. 

1   Introduction 

While powerful web search engines can sift through enormous amounts of 
biochemical information online, it is still difficult to find compounds having a set of 
desirable attributes i.e. can form specific derivatives, or are stable at room 
temperature and have a non-toxic metabolic profile. Although over 80 file formats 
exist to represent chemical data, none, including the Chemical Markup Language 
(CML) [1], are capable of encoding arbitrarily knowledge in such a way that the 
meaning is wholly preserved. Controlled vocabularies have been designed for 
chemical functional groups (CO [2]) or compounds (ChEBI [3]), but they are 
generally used for the annotation of chemicals or in navigation of search results. In 
contrast, Semantic Web ontologies aim to explicitly describe and relate objects using 
formal, logic-based representations that a machine can understand and process [4]. 
This will facilitate knowledge representation, integration and question answering in 
areas of critical importance to the life sciences.  

In this paper, we describe a knowledge representation for chemical information 
using OWL, the Web Ontology Language [5]. OWL facilitates the description of 
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complex concepts from simpler ones and can be used for consistency checking and 
classification [6]. We describe our efforts to integrate DrugBank and PubChem, two 
popular chemical databases and DBpedia, an RDF version of Wikipedia. Finally, we 
illustrate the value of using semantic web technologies to seamlessly integrate and 
query diverse biochemical knowledge in a manner that opens new avenues for 
knowledge discovery in the life sciences. 

2   Methods 

2.1   Chemical Knowledge Representation 

Upper level ontologies increase interoperability and semantic coherency of domain 
ontologies by grounding the basic types of domain entities and imposing restrictions 
on the relationships that these entities may hold. We use the Basic Formal Ontology 
(BFO) [7] because it offers a simple framework that distinguishes objects, qualities, 
processes and spatial regions. Our Basic Relation Ontology1 (BRO) provides object-
process, object-quality, parthood, spatial, temporal relations drawn from foundational 
work [8]. The New Upper Level Ontology2 (NULO) maps the domain and range 
values of BRO properties to BFO concepts, and further constraints on relations are 
specified in NULO-constraints3. Reflexive, irreflexive, asymmetric, disjoint roles and 
role chains have been added to the BRO-OWL11 ontology4 so as to maximize 
reasoning capability [9]. 

An outline of the chemical knowledge representation is illustrated in Fig 1. Briefly, 
molecules, atoms and rings are types of objects that bear qualities and may be located 
in spatial regions. 

Objects: Molecules, atoms, rings are types of objects that are spatially extended, 
maximally self-connected and self-contained and bear any number of qualities 
appropriate to their type. 

Qualities: A quality is a categorical property that exists in some object. Qualities 
have been defined for each kind of object. For instance, a molecule might bear the 
quality of monoisotopic mass whereas the partial charge is an atom quality. Some 
quality types may be borne by multiple types of objects (i.e. atoms or molecules may 
bear a chiral quality). We have identified over 50 types of qualities, largely defined 
from OpenBabel and PubChem descriptors. 

Mereology: A molecule is composed of at least two or more atoms and has zero or 
more ring parts. Molecules or Rings are related to Atoms by hasProperPart, an 
asymmetric relation. Molecules and rings are related to each other by hasPart, a 
transitive (if a hasPart b and b hasPart c, then a hasPart c) and reflexive (one can 
have itself as a part) relation. Thus, rings may also be a molecule (i.e. benzene). 

                                                           
1 http://ontology.dumontierlab.com/bro 
2 http://ontology.dumontierlab.com/nulo 
3 http://ontology.dumontierlab.com/nulo-constraints 
4 http://ontology.dumontierlab.com/bro-owl11 
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Fig. 1. Overview of major ontological components and their relationships in the chemical 
knowledge representation 

Connectivity: Atoms are connected to each other via symmetric hasBondWith object 
properties. Specification of number of shared of electrons is done via sub-properties  
(e.g. hasSingleBondWith, hasAromaticBondWith).   

Stereochemistry: The spatial arrangement of atoms within molecules affects 
behavior and function. Stereochemical knowledge is reflected at the molecule (the 
molecule is a ChiralMolecule), atom (the atom is a ChiralAtom) and bonds 
(hasWedgeBondWith and its inverse hasHashBondWith) levels. 

Location: Physical objects such as molecules or atoms may be spatially located in 
two or dimensional spatial regions to which specific coordinates may be assigned. 
The Cartesian coordinates of a three dimensional spatial region are assigned via 
datatype properties (coordinateX, coordinateY and coordinateZ). Since atoms are 
parts of molecules, and the region of space that atoms occupy is part of the region of 
space that molecules occupy, we can say that an atom isLocatedIn molecule [8]. 

2.2   Open Babel: Chemical File Conversion to OWL 

We implemented a plugin for the widely used and freely available Open Babel 
software suite to convert any of the 80 chemical file formats into an OWL chemical 
knowledge model. OB provides an application programming interface (API) for 
reading and writing chemical file formats, accessing information about molecules, 
atoms, bonds, rings and for computing chemical attributes. Since each file format is 
different and contains an arbitrary set of information, we compute missing 
information using Open Babel built-in routines, where possible. 

The plugin architecture is highly flexible and allows one to create mappings from 
ontology classes and their attributes to main classes of the OB data model. The 
mappings are defined within 7 major sections of an XML based configuration file.  
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Generate: Specifies how the ontology should be generated. For example, it deals 
with adding comments or time stamps in the ontology header.  

Base: Specifies the namespace of the ontology.  

URIs: Specifies which namespaces will be used in the ontology. 

Import: Specifies which ontologies should be imported to provide additional 
information of named entities.  

Classes: Contains mapping rules for establishing class type and membership. OWL 
classes allow the grouping data with similar properties by defining the necessary and 
sufficient conditions for class membership. For example, one can define the 
HydrogenAtom class as an Atom (to which all of the atoms present in the OB data 
model get mapped) that have 1 as their atomic number. More complex mappings may 
be generated through unions and intersections of restrictions (or combinations of 
both) and nested conditions.  

DataProperties: Contains mapping rules to specify datatype properties. Datatype 
properties describe binary relations between OWL individuals and RDF literals or 
XML schema datatypes. For example, the Atom class would be the domain of hold 
the atomicNumber datatype property whereas Location would be the domain of 
coordinateX, coordinateY datatype properties. 

ObjectProperties: Contains mapping rules to specify object properties. Object 
properties describe relations between OWL individuals. A domain and range may be 
specified for each property; hence, we may define the hasProperPart object property 
with Molecule as a domain and Atom as a range. In this case, hasProperPart object 
property will be created between every single atom individual and a molecule 
individual (an individual is an instance of an OWL class).  

2.3   DrugBank 

DrugBank is comprehensive drug knowledge base that is freely available on the web 
[10]. It combines clinical and chemical information about drug molecules and also 
provides detailed information about their drug targets. DrugBank contains nearly all 
drugs that have been approved in North America, Europe and Asia. These have been 
tagged as approved, experimental, biotech, nutraceutical, illicit and withdrawn drugs.  

OWL classes are generated from each DrugBank "drugcard" records using Apache 
Group’s open-source implementation of UIMA5. UIMA is a framework to analyze 
large amount of unstructured information using a workflow of annotators. Each 
annotator uses information from the original input and/or from previous annotators in 
the workflow and produces new information that is made available to other annotators 
further in the workflow. We designed an RDF/XML template to allow UIMA 
annotators to collaborate in converting DrugBank records into an OWL class. This 
flexible approach decouples the OWL representation from the software.  

Drugs are types of objects represented as OWL classes. By importing the ontology 
into an existing OWL knowledge base, one can automatically classify instances based 

                                                           
5 http://incubator.apache.org/uima/ 
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on their characteristics. For example, the drug Leuprolide is equivalent to the class of 
all things that have pubchemcompoundid = 3911. On reasoning, we discover that all 
individuals asserted as instances of this class will inherit the property of having 
pubchemcompoundid = 3911 and that an individual that contains the value 3911 for 
the data property pubchemcompoundid will be inferred as an instance of the class.  

2.4   DBpedia Integration 

DBpedia makes the encyclopedia-like information from Wikipedia available in RDF. 
We mapped the Wikipedia link found in some DrugBank records to the corresponding 
DBpedia entry. The corresponding URI was found by querying DBpedia’s SPARQL 
endpoint for the resource that is the subject of the given Wikipedia page. When 
adding the DBpedia RDF graph, the record is visible to the ontology as an OWL 
individual. To strengthen the relationship between the DBpedia instance and the 
corresponding drug class from the Drugbank ontology, we assert that the class is 
equivalent to the set containing the DBpedia instance. This is expressed in OWL 
using enumerations (owl:oneOf). 

3   Results  

We created an example OWL knowledge base6 from some of the i) 4422 UIMA-
generated OWL ontologies from DrugBank records with PubChem identifiers, ii) 
Open Babel plugin generated OWL ontologies from PubChem SDF records and iii) 
script generated OWL import documents for DBpedia URIs from DrugBank 
Wikipedia links. We will demonstrate querying this knowledge base using the simple 
Manchester OWL syntax [11].  
 

Use Case 1: Querying Substructures, Functional Groups and Compounds 
An important aspect of chemical synthesis, pharmaceutical design and lead 
optimization involves searching chemical databases for compounds having certain 
kinds of substructures. Our knowledge model provides the means to define and search 
for substructures. As an example, let us search our knowledge base the -OH 
substructure. 
 
DLQuery: OxygenAtom that hasSingleBondWith some HydrogenAtom 
 

Such queries can be captured in an ontology of functional groups. A functional group 
describes the semantics of chemical reactivity in terms of atoms and their 
connectivity, and exhibits characteristic chemical behavior when present in a 
compound. In our ontology of major functional groups found in organic compounds7, 
the organic alcohol group is defined as R-OH, where R is any alkyl or aryl carbon. 
Importing the functional group ontology into the chemical knowledge base enables 
the reasoner to automatically discover which atoms are part of known substructures, 
and we can query accordingly: 

                                                           
6 http://ontology.dumontierlab.com/ckb-dils2008 
7 http://ontology.dumontierlab.com/organic-functional-group-complex 
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DLQuery: Molecule that hasPart some AlcoholGroup 
 

An ontology of organic compounds8 provides the necessary and sufficient conditions 
to automatically classify molecules based on the presence of functional groups. 
Hence, this ontology allows us to refer to the encapsulated concept in future queries: 
 
DLQuery: Alcohol 
 

In this way, once a substructure or functional group is defined, it can be captured as 
an ontology concept and published on the semantic web for sharing and reuse. 
 
Use Case 2: Simultaneous Querying of Chemical Qualities and Substructures 
A chemical knowledge base generated from the Open Babel OWL plugin will have 
structural information and a wide variety of descriptors, including identifiers. To ask 
about the set of descriptors for leuprolide using the PubChem identifier: 
 
DLQuery: isQualityOf some (Molecule and pubchemcompoundid value 3911) 
 

Answers to this query involve inferences drawn from i) the domain value of 
isQualityOf and ii) the hasQuality inverse property. First, PubChem descriptors are 
inferred to be qualities of an object due to fact that a Quality is the domain of the 
isQualityOf. Second, the knowledge base contains hasQuality assertions between 
molecules, atoms and rings and since the inverse of isQualityOf is hasQuality, it is 
possible to answer this query. Qualities including total charge, heat of formation, 
molecular mass, among others in the example knowledge base. 
 

Use Case 3: Query over PubChem, DrugBank and DBpedia 
Taken together, we can pose a fairly sophisticated query across our expressive 
ontologies and the three resources to ask about biotech drugs (DrugBank) that have an 
alcohol moiety (PubChem) and are eliminated within an hour (DBpedia): 
 

DLQuery: Alcohol and BiotechDrug and eliminationHalfLife  value "Hour" 

4   Discussion 

Knowledge representation. Representing chemical knowledge using an expressive 
formal language like OWL enables new opportunities for data integration and 
classification that are not possible with XML or RDF (on their own). Here, we take a 
step forward towards a more realist representation with respect to how molecules are 
composed, the qualities they bear, and the spatial locations they occupy. Having a 
regular and coherent representation rooted in reality should facilitate the classification 
of a feature and how it will be added to our knowledge.  

While our approach is guided by the Basic Formal Ontology, it is insufficient in 
several respects. The first is that the BFO would like to define types, and ensure that 
instantiated types are those that really do exist (and that we can point to). 
Unfortunately, several problems arise. First, OWL is inadequate to specify the full  
 
                                                           
8 http://ontology.dumontierlab.com/organic-compound-complex 
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molecular structure at the class level. This is because OWL class descriptions may not 
contain cycles. To overcome this limitation, we define classes in which only a single 
instance, containing the structural description, is the member. In this way, every 
instance of that class will inherit the properties of the equivalent instance. However, 
this approach has a serious consequence: that all instances of that class are equivalent 
to that single instance and therefore not differ. Thus, it will never be possible to have 
a collection of instances. So the solution is mostly to integrate information, rather than 
to have a realistic representation. As such, the solution is unsatisfying. However,  
recent work [12] to represent structured objects in OWL should prove adequate in this 
regard, and provide the means by which we can describe full molecular structure at 
the class level. Second, the integration of RDF-data from DBpedia forces an instance-
level representation. This is because for a proper class description, triples must be 
converted into class restrictions, which are syntactically different. This poses a major 
problem that we overcome in the same manner as was used for molecule structure, but 
remains restricted to data integration, rather than realistic representation. Moreover, 
there exists an exceptional challenge in interpreting DBpedia data properties. Some 
have cryptic single letter names (i.e. “c” or “r”) for which no definition is provided. 
Longer term goals include creating an OWL mapping to DBpedia types identified 
with molecule records. 

Data integration: While data integration is trivially satisfiable when using the same 
URIs, it is also possible to integrate data at the class level. Using OWL, we have 
defined class membership based solely on one or more identifiers, and therefore can 
yield logical equivalence between different data records. Class based representations 
mean that all instances will inherit the attributes of their type, and hence the challenge 
is to identify which identifiers in fact are equivalent. For instance, PubChem 
identifiers are unique, but several structures can map to CAS numbers. Using the 
logical framework of OWL it is possible to generate an inconsistency when two 
records are said to be different when they are in fact the same. More work is required 
in this regard to identify logically consistent identifier mappings.  

Conversion of legacy data: There exists major challenge in creating ontologically 
structured knowledge from textual or semi-structured data. While DrugBank is a good 
resource for finding information about drug classes or drug targets, the meaning of 
this data is in free text rather than having been selected from controlled vocabularies. 
Our conversion is largely limited to highly regular fields such as FDA status or links 
to PubMed papers, and the remainder lies in the form of annotations (rather than class 
restrictions). Since DrugBank annotates their drugs using a shallow set of drug 
categories, we expect to further refine these into a nicely structured ontology and/or 
mapped to existing drug ontologies (i.e. ChEBI). There is a need for investigating 
new techniques to mine the large amount of textual information embedded as general 
descriptions, indications, toxicity, mechanism of action, absorption, dosage forms, 
among others into coherent structured knowledge.  

Chemical conversion: Our plugin offers enormous flexibility in converting 
unstructured descriptors from sources other than PubChem. The configuration file can 
be modified so as to create a minimal knowledge base with only essential information, 
or can be used to map a wide variety of descriptors to ontological concepts, whether 
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ours or their own. To maintain compatibility, users can specify a number of 
relationships (equivalence, subclass, type, sub-property) to concepts defined in our 
ontologies.  

5   Conclusion 

In this paper, we described a chemical knowledge representation for an OWL-based 
knowledge model. We integrate and query across PubChem, DrugBank and DBpedia 
in a way that is not possible using traditional database technologies. Indeed, by 
leveraging Semantic Web technologies, it becomes possible to integrate chemical 
information at differing levels of detail and granularity, opening new avenues for life 
science knowledge discovery. 
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Abstract. This research addresses the problem of prediction of protein-
protein interactions (PPI) when integrating diverse biological data. Gold
Standard data sets frequently employed for this task contain a high pro-
portion of instances related to ribosomal proteins. We demonstrate that
this situation biases the classification results and additionally that the
prediction of non-ribosomal based PPI is a much more difficult task. In
order to improve the performance of this subtask we have integrated
more biological data into the classification process, including data from
mRNA expression experiments and protein secondary structure informa-
tion. Furthermore we have investigated several strategies for combining
diverse one-class classification (OCC) models generated from different
subsets of biological data. The weighted average combination approach
exhibits the best results, significantly improving the performance at-
tained by any single classification model evaluated.

1 Introduction

The prediction of protein-protein interactions (PPI) has emerged recently as an
important problem in the fields of Bioinformatics and Systems Biology due to
the fact that many essential cellular processes such as signal transduction, trans-
port, cellular motion and most regulatory mechanisms including gene regulatory
process are mediated by this kind of interactions. High-throughput methods
for the direct identification of protein-protein interactions have been developed
including yeast two-hybrid screens (Y2H) [1,2] and mass spectrometry meth-
ods for protein complex identification [3,4]. Even though these high-throughput
techniques can considerably increase the number of predicted PPI, in general
the data obtained by these methods is often incomplete and suffers from high
false-positive and false-negative rates [5]. In order to improve the accuracy and
trustability of predicted protein interacting pairs various studies have been de-
veloped in the past years focused on the integration of diverse biological sources
of information which could potentially incorporate new indirect clues related to
protein interactions, demonstrating that the combined use of direct and indirect
biological insights can improve the quality of predicted PPI.

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, pp. 177–191, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The prediction of PPI has been commonly viewed as a classical binary classi-
fication problem where the aim is to predict whether any two proteins do or do
not interact. Several traditional machine learning methods have been employed
in the past for this specific task [6,7,8,9,10,11]. These methods employ supervised
learning algorithms where the final objective is to generate a classification model
from a gold standard reference set of positive (interacting pairs) and negative ex-
amples (non-interacting pairs). Two major drawbacks have been associated with
this approach in the past: firstly imbalanced class problems where the number
of positive examples (pairs of proteins which really interact) is much less than
the number of negative ones. Secondly, while the selection of positive examples
is based on trustable experimental techniques (i.e. small scale experiments), the
set of negative examples is selected based on some assumptions, because there
is no experimental method to find pairs of proteins which do not interact, which
could introduce some bias in the classification results [12].

In the work presented in [13] we introduced the use of one-class classification
(OCC) methods as a solution to these problems. OCC methods use feature in-
formation from only one of the classes (i.e. trustworthy positive examples in this
case) in order to generate a classification model which consequently is indepen-
dent of the kind of negative gold standard examples employed [14]. Additionally
OCC methods are able to efficiently deal with highly imbalanced classification
problems [15]. Among various OCC methods we evaluated the Parzen OCC
density estimation approach clearly exhibited the best performance. Also in [13]
we demonstrated that the Parzen OCC method performs competitively with
those generated by conventional classifiers (i.e. Decision Trees, Support Vector
Machines and Naive Bayes) and outperformed them in many situations. Addi-
tionally we reported that the performance of these conventional binary classifi-
cation approaches is highly influenced by the quantity of negative examples used
for training the respective models. This suggests that conventional classification
models are more reliant on negative information (an untrustworthy set of neg-
ative PPI examples) than on positive information (experimentally corroborated
PPI examples).

In this paper we address a potential new drawback which appears to affect
the performance of the prediction of PPI. We focussed on the prediction of co-
complex relationship in yeast, where the objective is to identify and characterize
protein pairs which are members of the same protein complex. We found that the
positive gold standard data set, which has been employed in the past in many
related investigations, contains a high proportion of examples associated with in-
teractions of ribosomal proteins. Here we demonstrate that this situation indeed
biases the classification task, resulting for instance in an over-optimistic perfor-
mance result. We divided the general classification task into two subtasks, the
prediction of ribosomal and non-ribosomal PPI (i.e. dividing the gold standard
set in two different sets). It can be seen that while the prediction of ribosomal
PPI can be performed with high accuracy, the prediction of non-ribosomal PPI
is a much difficult task.
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Turning our attention exclusively into the subtask of prediction of non-
ribosomal PPI we investigated some strategies in order to improve its perfor-
mance. Firstly we considered the integration of more biological features to the
classification process, related to mRNA expression and protein secondary struc-
ture information. Then we investigated and demonstrated that by combining
the predictions of several Parzen OCC models induced from different subsets
of biological data, it is possible to increment significantly the performance of
prediction of non-ribosomal PPI.

The rest of the paper is organized as follows. In section 2 we demonstrate the
effect associated with the high proportion of ribosomal PPI in the reference data
set, and describe some methodological issues. Section 3 deals with the problem
of prediction of non-ribosomal PPI, describing how new biological features are
integrated to the classification process. In section 4 we investigate various strate-
gies to combine independent Parzen OCC models generated employing different
subsets of biological information. Finally section 5 concludes the paper.

2 Analysis of Positive Gold Standard Set

This research focusses on the prediction of co-complex protein pairs (pairs of
proteins which are co-members of the same protein complex). In order to de-
velop this classification task we need a reference data set or gold standard set
containing positive (true interacting protein pairs) and negatives examples (non-
interacting protein pairs). Although only positive examples are needed in order
to train OCC methods, a set of negative ones is still required to obtain a compa-
rable performance evaluation measure. Here we extend the data set we previously
employed in [13] to consider a larger number of positive and negative examples.
We follow the work in [6] to derive the positive gold standard set from the MIPS
complex catalogue [16], and also the negative gold standard set which is related
to protein pairs which are present in different cell localization and consequently
are more likely not to interact. A similar reference data set has been employed be-
fore in [6,7,9,17]. The final data set we employed in this research includes ∼6,700
positive examples and ∼550,000 negative ones considering only examples where
complete information for each one of the biological features were available.

Three different types of biological data were considered as features to develop
our classification approach 1:

– mRNA expression, the Pearson correlation is estimated for every protein
pair considering two different studies the Rosetta compendium [18] and cell
cycle time series analysis [19].

– Functional similarity, of protein pairs was estimated from the gene ontology
(GO) [20] and the MIPS [16] functional catalog, obtaining two new numeric
features. The assumption here is that proteins in the same complex tend to
participate in the same biological processes.

1 More details about how these features were estimated and encoded for the classifi-
cation task can be found in [13].
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– Essentiality information, was also used [16], assuming that is more expected
that two proteins in the same complex are both essential or non essential
but not a mixture of these two attributes.

Analyzing the composition of the positive gold standard set we found that
a high proportion of these examples (∼66%) are related to ribosomal protein
pairs. This is because ribosomal protein complexes (cytoplasmic and mitochon-
drial) are the most numerous among all the different complexes included in the
MIPS complex catalogue [16] which contain a large number of proteins. In this
research we argue that this situation could considerably affect the performance
of the classifiers, biasing the classifiers to mostly recognize interactions related
to ribosomal proteins. In order to assess this situation we proceeded to divide
our positive gold standard set in two subsets containing all ribosomal related
PPI and all non-ribosomal related PPI respectively, generating at the same time
two new classification subtasks related to the prediction of ribosomal and non-
ribosomal PPI. The new positive gold standard sets contain ∼4,600 and ∼2,100
protein pairs respectively. We employed the same negative reference data set in
both cases.

The performance of Parzen OCC approach was evaluated for the three situa-
tions considered above. More details about how the Parzen OCC approach works
are given later in this section. Here we follow the same approach as in [13] to
evaluate the performance of different classification methods. For the case of pre-
diction of PPI we are specifically interested in evaluating the performance of the
different classifiers under conditions of low false-positive rate, aiming to maxi-
mize the number of real interacting protein pairs predicted while minimizing the
number of false-positive predicted ones. This is of especial interest for biologists
working on the identification and validation of new PPI, because they can focus
in the study of only the top ranked predicted PPI targets, instead of evaluating
random protein pairs. Receiver Operator Characteristic (ROC) curves, which
show the tradeoff between the false-positive rates and true-positive rates, were
generated. But instead of calculating the area under the whole ROC curve or
AUC score, here we consider the normalized area under the portion of the ROC
curve related to the first 50 false-positive examples or AUC50 score. This mea-
sure has become a common and accepted performance measure for this specific
task [10,11,13]. Additionally this performance measure is related to low values of
false-positive rates and thus is more relevant in situations of severe class imbal-
ance as in the case of prediction of PPI [21]. A ten fold cross validation procedure
was performed for every evaluation in order to assess the variability of the mod-
els generated. The performance of the Parzen OCC classifier for the different
tasks mentioned above is shown in Table 1. Several conventional classifiers were
also included in this evaluation (Decision Trees, Support Vector Machines and
Naive Bayes). For this a balanced class set was created using all the positive
examples available and an equal size sample of negative examples randomly se-
lected from the whole negative gold standard set. The WEKA machine learning
library [22] was used to perform the experiments related to Decision Trees and
Naive Bayes, while the evaluation of Support Vector Machines was carried out
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Table 1. Performance of different classifiers measured as AUC50 scores. Three cases are
evaluated: prediction considering all PPI in the positive gold standard set, prediction of
ribosomal PPI and prediction of non-ribosomal PPI. AUC50 scores given as mean value
and standard deviation (in brackets) based on a ten fold cross validation procedure.

Classifier All PPI ribosomal non-ribosomal

Parzen OCC 0.5425 (0.0228) 0.7422 (0.0121) 0.1239 (0.0179)

Binary classifiers:
Decision Trees 0.4916 (0.2902) 0.4808 (0.4486) 0.0439 (0.0280)
Naive Bayes 0.0064 (0.0021) 0.4710 (0.0202) 0.0207 (0.0105)
Support Vector Machines 0.2687 (0.0250) 0.5479 (0.1217) 0.0433 (0.0124)

using the MATLAB interface to the SVM-light toolbox [23]. The performance
of conventional classifiers is also given in Table 1.

We observed a clear difference between the performance in the prediction of
ribosomal and non-ribosomal PPI. In the case of prediction of ribosomal PPI
the Parzen OCC approach exhibits a high performance of ∼0,75 measured as an
AUC50 score. The prediction of non-ribosomal PPI seems to be a more difficult
task, here the performance of Parzen OCC approach is significantly reduced to
only ∼0.12 measured as an AUC50 score. Interestingly the performance in the
situation when all PPI available in the positive gold standard are employed reach
an AUC50 score of ∼0,54 which is in-between the performance of both subtasks.
The same behavior was observed when conventional classifiers were evaluated.
the results show that the Parzen OCC approach clearly outperforms all conven-
tional classification techniques for the different task evaluated, confirming our
previous results reported in [13].

These results suggest that the performance obtained using the whole posi-
tive gold standard set is biased towards the prediction of ribosomal related PPI.
The high performance exhibited in the prediction of the ribosomal PPI can be
explained because they share common patterns in most of the biological fea-
tures employed in the classification process, specifically those associated with
functional similarity and mRNA expression based features. This is not the case
when predicting non-ribosomal PPI which appears to be a much more difficult
challenge and needs more attention by the scientific community in order to im-
prove its performance. However a similar positive gold standard set derived from
MIPS complex catalogue [16] has been employed in many studies related to the
prediction of co-complex PPI [6,7,8,9,11,17,24]. The problem associated with the
high proportion of ribosomal related proteins has not been previously reported
or addressed according to the best of our knowledge. Furthermore in this paper
we have focused on the task of prediction of non-ribosomal PPI and how to
improve the performance of the Parzen OCC method for this task.

2.1 Parzen OCC Method

Here we briefly describe the main issues associated with the use of the Parzen
OCC approach for the task of prediction of PPI. In this research we treated this
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as a OCC problem in the sense that only examples of one class, the positive
interaction examples, are available and/or trustable, becoming the target class.
These examples are used to generate a classification model which is used after-
wards to discriminate between positive and negative examples also called the
outlier class.

Every pair of proteins available in the gold standard set is represented by a
vector Xi containing the information for the biological features considered here,
and a label Yi which can take two values depending on whether the proteins
in the pair do really interact (Yi = 1) or not (Yi = −1). The dd tools Mat-
lab toolbox [25] was employed to develop the experiments associated with the
application and evaluation of the Parzen OCC method. Here an independent
Gaussian distribution is considered for each one of the T target objects (positive
PPI examples) used for training a model. In order to classify a new object X the
distance to all training objects is employed and a function f(X) is estimated as:

f(X) =
T∑

i=1

exp(−(X − Xi)T h−2(X − Xi)) (1)

The smoothing parameter h, commonly called the Parzen width, is used here
and is related to the width of a region R (in a Gaussian space) generated around
each object in order to separate the target from outlier zones. The f(X) value
for new objects is then compared with a threshold θ and classified as a target if
f(X) ≥ θ or else as an outlier. In this research the threshold θ was set in a way
that none of the positive examples employed to train the model is misclassified.
The value of h can be varied in order to find an optimal performance related to
the specific task conditions. The Parzen OCC classification model finally assigns
a confidence value to each prediction.

3 Integration of Biological Information

3.1 mRNA Expression Integration

In order to improve the performance of prediction of non-ribosomal PPI we eval-
uated the effect of integrating more biological information into the classification
process. The first approach developed was related to the integration of informa-
tion associated with mRNA expression experiments. Here we explore the idea
that m-RNA expression data obtained under different experimental conditions
could give insights about different sets of new potential PPI. This is related to
the identification of PPI sub-networks associated with cell adaptation to chang-
ing environments proposed and discussed in detail in [26]. We integrated the
data generated in [27] related to yeast stress response. mRNA data previously
employed in our study was related to yeast cell-cycle time series analysis [19] and
the Rosetta compendium [18] which was related to gene mutations and chemical
treatments. We evaluated the performance of the Parzen OCC method for this
new data set following the same procedure as described in section 2. Initially
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we considered the case when all the biological features are integrated in a single
data set which is then employed to generate and evaluate the performance of the
Parzen OCC method. In order to evaluate the individual effect of the different
mRNA expression data in the performance of the Parzen classifier. We also con-
sidered the cases where information related to only one of the mRNA expression
experiments is employed. Finally we considered the situation where no mRNA
expression data is employed. The results for all these are exhibited in Table 2
(middle column).

Table 2. Performance for diverse sets of biological data measured as AUC50 scores.
AUC50 scores given as mean value and standard deviation (in brackets) based on a
ten fold cross validation procedure

Description of data employed mRNA Integration Plus SS Integration
AUC50 AUC50

All mRNA expression data 0.1404 (0.0033) 0.2271 (0.0183)

Only Rosetta Compendium 0.1424 (0.0249) 0.2395 (0.0177)

Only Cell-Cycle 0.1859 (0.0208) 0.2344 (0.0146)

Only Stress response 0.2493 (0.0283) 0.2694 (0.0181)

No mRNA expression data 0.1249 (0.0220) 0.2656 (0.0238)

We observed that when all the data is employed together the performance of
the Parzen OCC classifier is only slightly improved, reaching an AUC50 score
of ∼0.14 (compared with an AUC50 score of 0.1239 in the original situation as
shown in Table 1). When data from only one mRNA expression experiment is
employed we found a significant increment in the performance of the Parzen OCC
method for the case of cell-cycle and stress response condition and a slight incre-
ment when using Rosetta experiments. The fact that models based on individual
mRNA information perform better than the case when all data is integrated
together suggests that the integration of features related to diverse mRNA ex-
pression conditions does not have a synergistic effect in the performance of the
Parzen OCC method. On the contrary the integration of these features in a
single data set seems to induce some kind of misclassification effect and con-
sequently tends to reduce the overall performance. One possible explanation of
this situation is that individual mRNA expression data sets (related to differ-
ent experimental conditions) give different insights to the prediction problem.
Moreover the classifier based on all the features together is not able to correctly
discriminate between these situations. Finally the case when no mRNA infor-
mation is employed exhibits a performance similar to the one obtained in the
original situation described in section 2. Considering all these results we believe
that it might be useful to investigate other ways to combine the information
related to individual mRNA predictive models – see section 4.
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3.2 Protein Secondary Structure Integration

Following the idea of integrating more biological information we investigated
the use of protein secondary structure (SS) information. SS information has
been employed in recent years for the characterization of protein-protein binding
sites [28,29,30,31]. However these approaches consider only a reduced number of
PPI which have been crystallized and are available in the Protein Data Bank
(PDB) and additionally are focused exclusively on the interaction site region. In
our approach we extend this idea to incorporate a larger number of PPI. To the
best of our knowledge this is the first investigation associated with the use of
secondary structure information for the prediction of PPI in a broad context.

In order to develop our approach instead of using 3D structure information
we employed the whole linear protein sequence which is available for all yeast
proteins. For each protein involved in our study we predicted the SS and relative
solvent accessibility (RSA) for each residue employing the SSPRO program [32].
In this case SS is related to three possible classes for each residue, helix (H),
strand (E) and the rest(C). RSA is associated with buried (b) or exposed (e)
residues. Once SS ad RSA sequences have been predicted we faced the problem
of how to generate features that could reflect some kind of relationship between
SS and RSA for any two proteins. These features were then integrated into our
general task of prediction of PPI and so were estimated for each instance included
in the positive and negative PPI gold standard sets. A total of 13 features were
generated as follows:

– SS similarity: Three features were generated based in the similarity of two
SS sequences. Local and global alignments scores were estimated using the
SSEA software [33]. Additionally we incorporated the common Edit Distance
between them.

– SS and RSA composition: Four features were generated based on the SS
and RSA composition following the work in [34]. For every protein a com-
position vector H,E,C,b,e containing the fraction of each residue type in the
whole sequence was estimated. Then four similarity scores were calculated
using dot product, cosine, Gaussian kernel and correlation between any two
composition vectors.

– Ratios: Six features were generated based on the ratios of the composition
of SS and RSA (measure this time as the number of residues of each type)
and the total protein sequence length.

Firstly we evaluated the performance of the Parzen OCC method when only
the 13 features based on SS and RSA information were employed. However the
results (AUC50 scores) in this case were very poor (results not reported in this
paper). Further we evaluated the effect of integrating these 13 features with the
rest of the biological data previously employed. For this we used the same data set
previously evaluated in section 3.1, incorporating the SS and RSA information
for each of them. The results related to the performance of Parzen OCC approach
when secondary information is integrated are shown in table 2 (left column).
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We could see that the integration of secondary structure information has the
effect of significantly incrementing the performance of the Parzen OCC approach
in all situations (different subsets of biological data). This suggests that this type
of information can indeed contribute to improving the performance of PPI pre-
diction. Even though each of these features do not perform well when employed
alone, it seems that integration with other types of biological data helps in the
discrimination between positive and negative examples in the AUC50 region.
Similar to the analysis developed in section 3.1 we again observed that models
based on individual mRNA expression conditions perform better than when all
biological information is employed together. This confirms our initial assump-
tion that no synergistic effect is obtained when different mRNA expression data
is utilized together. However in this case the effect seems to be less significant,
which can be attributed to the presence of SS features.

Interestingly the strongest increment in the performance is shown in the case
when no mRNA expression data is employed at all, more than doubling the
performance of the original case. This suggests that the Parzen OCC model
generated in this last configuration can give different insights to the problem of
prediction of non-ribosomal PPI than those models based on individual mRNA
expression information. This is also supported by the fact that SS based features
contribute to improving the performance of every model based on individual
mRNA data.

4 Combination of Diverse OCC Models

Based on the results obtained in the previous section, we further investigates
the possibility of combining the predictions of different Parzen OCCC models in
order to improve the performance of the prediction of non-ribosomal PPI. This
exploits the idea of combining models that give us different insights to the prob-
lem of prediction of non-ribosomal PPI. Four models evaluated in section 3 were
selected which could potentially satisfy this assumption. Three were based on
individual mRNA expression experiments (without SS features) and one based
on SS features with no mRNA information.

4.1 Diversity of Classification Models

By combining the predictions of different classifiers we aimed to improve the per-
formance of the overall classification task [35]. This general approach is known
under different names in the literature: classifier ensembles, ensemble learning
systems, mixture of experts, etc. Other works [36,37,38] have shown that a good
ensemble is only possible when the base classifiers perform diversely. This means
correctly classifying and/or misclassifying different sets of objects. However di-
versity between classifiers can not ensure that there is an improvement in the
overall performance. Without diversity there is no point in investigating the
combination of diverse classification models.

In order to evaluate the diversity of the four selected classification methods we
considered three general diversity measures commonly employed in the related
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literature: Disagreement measure, related to the degree of disagreement between
two classifiers simply calculating the number of cases where one classifier is cor-
rect and the other is incorrect [39]; Q statistics, related in this case to the degree
of similarity in the performance between two classifiers [40]; and Kohavi-Wolpert
variance, which is associated with the variance derived from the decomposition
formula of the classification error of a classifier [41]. To calculate these diversity
measures for the four models selected in our approach we followed the general
guidelines proposed in [36]. In our approach we are interested in the diversity of
different classification models specifically in the AUC50 region (low false-positive
rate values). Thus we adapted the diversity measures as follows. We considered
exclusively the first ”N” instances with the highest prediction confidence for each
of the four Parzen OCC classifiers. Then we generated a unique list of instances
integrating all selected sets. Finally instead of considering if an object is cor-
rectly or incorrectly classified by a classification model, we focussed on whether
any object belonged or not to the highest confidence list of each model.

Estimates of these diversity measures are shown in Table 3. The results are
given as mean value and standard deviation (in brackets) based on 10 fold cross
validation (10FCV) procedure. These results were estimated using N=150, this
value was selected arbitrarily considering that on each evaluation related to the
10FCV procedure around 200 positive examples are classified (non-ribosomal
PPI gold standard set contains a total of ∼2,100 instances). Diversity estimates
employing N equals 100 and 200 were also calculated (results not included in the
paper) exhibiting similar values. In the case of the Disagreement measure and
Q statistics the average over all binary combinations of the four models selected
was calculated. The table also shows the theoretical minimum and maximum
values for each diversity measure considering the case when four models are
combined. The Q statistic measure was normalized to have values between 0
and 1 (maximum diversity) following the approach in [37].

From the results in Table 3 it is possible to see that the four Parzen OCC
classification models selected show a high diversity in all cases. This confirms our
initial assumption that these models which were induced from diverse biological
subsets of data give different insights into the problem of prediction of non-
ribosomal PPI. Consequently this confirms our hypothesis that by combining
their prediction it might be possible to improve the performance of the overall
task.

Table 3. Variability of diverse models employed for combination process

Diversity measure mean value Min. Max.

Disagreement 0.4946 (0.005) 0 1

Q statistic 0.5850 (0.022) 0 1

Kohavi-Wolpert variance 0.1855 (0.002) 0 0.25
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4.2 Combination Strategies

In order to combine the predictions of the four Parzen OCC methods selected we
investigated several strategies commonly employed in the literature. Each clas-
sifier in our ensemble assigns a predictive (or confidence) value to every object
classified. These individual predictions were then combined in several ways in
order to generate a single prediction score, which is employed for the final clas-
sification of diverse instances included in the test set. Four fixed combination
rules were firstly investigated, which are related to the Mean, Median, Maxi-
mum and Product combination of the predictions of different classifiers. These
approaches are fixed in the sense that it is not necessary to optimize any extra
parameter(s). Additionally we investigated the weighted average combination
approach, where different weights are assigned to each classifier prediction, and
the finally prediction score was calculated by a linear combination of them [42].

In order to optimize the performance obtained by the weighted average com-
bination approach (AUC50 score), we developed the following procedure. First
constrain the sum of all weights to be equal to 1 (no negative weights were
considered). Then evaluate the performance (AUC50 score) under different sit-
uations assigning different sets of weights to each classifier. For this we consider
the whole range of possibilities, varying the weights assigned to each classi-
fier between 0 and 1. Finally select the set of weights exhibiting the highest
AUC50 score. The results derived using these combination strategies are shown in
Table 4.

Table 4. Performance for diverse combination strategies measured as AUC50 scores.
AUC50 scores given as mean value and standard deviation (in brackets) based on a
ten fold cross validation procedure

Model combination strategy AUC50

Mean combination 0.2897 (0.0218)

Median combination 0.2679 (0.0213)

Max combination 0.2226 (0.0234)

Product combination 0.3594 (0.0303)

Weighted average combination 0.3809 (0.0314)

We can see that most of the combination strategies produce an increment in
the performance of the prediction of non-ribosomal PPI (with the exemption of
the Maximum rule combination strategy), compared to the performances pre-
viously given in Table 2. The best performance was obtained when employing
the weighted average combination approach. In this case an AUC50 score of over
0.38 was achieved, representing a significant increment in the performance of this
task. The weights assigned to each classifier in the weighted average combination
approach can be assigned a certain degree of importance. In the optimum situ-
ation achieved here the Parzen OCC model based on SS data without mRNA
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expression information was given the highest weight (∼0.5), followed by the
models based on mRNA expression associated with Stress response (∼0.3), cell-
cycle(∼0.15) and Rosetta compendium(∼0.05). The second best performance
was achieved by the product combination approach with an AUC50 score of
∼0.36; interestingly this combination technique seems to perform well if the
outcomes of individual classifiers are independent [43].

5 Conclusions

The research described in this paper addressed the problem of the prediction
of co-complex PPI using the Parzen OCC method and integrating diverse kind
of biological data. The positive gold standard set usually employed in this task
contains a high proportion of ribosomal PPI. We have demonstrated that this
situation introduces a bias in the classification task. We also showed that the
subtask associated with the prediction of non-ribosomal PPI is a more difficult
problem. This subtask has not received attention in the past, and our work is
the first attempt to deal with this situation.

We focussed our efforts to improve the prediction of non-ribosomal PPI. We
investigated the effect of in integrating new biological information into the pro-
cess, based on data from mRNA expression experiments and protein secondary
structure (SS) information. We have demonstrated that the integration of data
from diverse mRNA expression experiments in a single data set has a negative
effect in the performance of the Parzen OCC approach. There is no synergy ef-
fect in this case, and Parzen OCC models based on individual mRNA expression
experiment outperform the one which integrates all the data. On the other hand
the integration of protein secondary structure information results in a positive
effect in the increment of performance of this predictive task. The performance of
all of the models evaluated is improved when SS based features are incorporated
into the classification process, including the case when no mRNA expression
data is used. These results are very promising, and according to the best of our
knowledge this is the first attempt to integrate this kind of information for the
prediction of PPI.

Finally we investigated several strategies to combine predictions of different
Parzen OCC models induced from diverse subsets of biological data. Four models
were selected for this procedure, three based on individual mRNA expression
experiments (without SS information) and one based on SS information (without
mRNA expression data). These models exhibited a high degree of diversity in
their predictions corroborating our assumption. We have demonstrated that it
is possible to significantly improve the performance of the prediction of non-
ribosomal PPI by combining the predictions of several Parzen OCC models.
The weighted average combination approach exhibited the best performance,
and also gave some insights regarding the relative importance of the different
classifiers employed.
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Abstract. We propose a novel semi-supervised clustering method for
the task of gene regulatory module discovery. The technique uses data
on dna binding as prior knowledge to guide the process of spectral clus-
tering of microarray experiments. The microarray data from a set of re-
peat experiments are converted to an affinity, or similarity, matrix using
a Gaussian function. We have investigated two methods to determine
the optimal Gaussian variance for this purpose. The first method was
based on a statistical measure of cluster coherence, and the second on
optimising the number of constraints satisfied in the clustering process.
The constraints, which were derived from dna-binding data, were used to
adjust the affinity matrix to include known gene-gene interactions. Clus-
ters were found using a spectrical clustering algorithm, and validated
by using a biological significance score which was the proportion of gene
pairs sharing a common transcription factor in the resulting clusters. Our
results indicate that our technique can successfully leverage the informa-
tion available in the dna-binding data. To the best of our knowledge this
is a novel formulation for the purpose of gene module discovery.

1 Introduction

Complex functions of living cells in nature are carried out through the concerted
activities of many genes and gene products which are organized into co-regulated
sets also known as regulatory modules [1]. Understanding the organization of
these sets of genes will provide insights into the cellular response mechanism un-
der various conditions. Recently a considerable volume of data on gene activity,
measured using several diverse techniques, has become widely available. By fus-
ing this data using an integrative approach, we can try to unravel the regulation
process at a more global level. Although an integrated model could never be as
precise as one built from a small number of genes in controlled conditions, such
global modelling can provide insights into higher processes where many genes are
working together to achieve a task. Each of the different data types (microarray,
dna-binding, protein-protein interaction and sequence data) provides a partial
and noisy picture of the underlying actions. Hence there is a need to integrate
them in order to obtain an improved and reliable picture of the whole process.

A considerable amount of work has been done by researchers [1,2,3] in order to
integrate datasets to determine which groups of genes act together in modules.

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, pp. 192–203, 2008.
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The techniques used to find these gene modules range from simple clustering to
sophisticated statistical methods. We have used a novel formulation called semi-
supervised spectral clustering which is a clustering algorithm in which supervision
is provided in the form of constraints and clustering is done in spectral domain
using the eigenvectors of an affinity matrix derived from the data. We have
used Dna-binding (chromo-immunoprecipitation) datasets, which provide direct
evidence of gene-transcription factor (TF) interaction, to derive the constraints
in order to guide the clustering of microarray data. It is called a semi-supervised
algorithm [4] because unlike traditional supervised clustering algorithms [5], it is
not necessary to satisfy the constraints. Rather than acting as constraints to be
enforced, they are used to guide the clustering process. Thus different datasets
are not being merged literally but rather one is being used to guide the clustering
of the other.

One of the advantages of our approach is that it can be used over the full
range of bioinformatics data - both vectorial as well as non-vectorial. In recent
years many similarity measures have been proposed for strings (dna sequences)
[6] as well as graphs (protein-protein interaction) [7].

This paper starts with a description of background research in the field of
supervised module discovery and a brief description of spectral clustering. This is
followed by a detailed description of our algorithm, the datasets, their processing
and the reasoning behind our choice of parameters. Lastly we have a section on
discussion of results obtained followed by conclusions.

2 Background and Related Work

The concept of applying prior knowledge in the form of constraints to cluster-
ing algorithms is not new. Initial supervised algorithms were modifications of
traditional ones and ensured that the resulting clusters had to satisfy certain
constraints. One of the first papers in this area [5] proposed a constrained ver-
sion of the famous k-means clustering algorithm by posing the problem in terms
of minimum cost network flows. Their objective behind adding the constraints
was to assign a certain minimum number of points to each cluster.

While such algorithms worked towards satisfying known constraints, other
distance based clustering algorithms were developed in which the metric that a
clustering algorithm uses in order to calculate distance between a pair of data-
points was modified by incorporating other sorts of information. These were the
first semi-supervised clustering algorithms. They did not enforce the constraints
but used them to provide guidance to the cluster formation process. This is the
crucial difference between supervised and semi-supervised clustering algorithms.
In the former approach the constraints are derived from known ground truth and
have to be satisfied, whereas in the latter the constraints are additional sources of
information but are considered noisy and hence not necessarily exactly correct.
This is a characteristic of the dna-binding data that we use.

[8] proposed a distance metric that combines information from expression data
and biological networks and uses it for clustering genes. They define a graph
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distance function on a metabolic network derived from MIPS [9] and combine it
with a correlation-based distance function for microarray gene expression mea-
surements. They assigned equal weights to both the sources. The problem with
this approach is that there is no justification for assigning equal weights to each
of the sources. [10] developed a similar algorithm in which instead of combining
the two information sources with equal weights, they used a shrinkage approach
with the genes belonging to the same functional classes assigned zero distance
(maximal similarity) and the rest of the genes using the distance calculated from
the microarray data.

Our technique is likewise based on the concept of using the constraints ob-
tained from one dataset in order to modify the similarity value that is obtained
from another dataset. The key difference is that while all the previous work has
used this principal to do clustering in some feature space, our technique uses the
modified similarity values to cluster in spectral space (Spectral clustering). The
field of spectral clustering itself was started by [11] who came up with the idea
of constructing graph partitions using the eigenvectors of an adjacency matrix.
It has generated a lot of interest in recent years [12,13] in clustering related re-
search. One of the earlier applications of this technique to bioinformatics was by
[14] who used it to cluster Gene Ontology terms to find sets of genes that might
be functionally related. They used an information theoretic measure borrowed
from text mining, where it had been used to calculate semantic similarities be-
tween words, to calculate the similarity values between the terms of the Gene
Ontology.

2.1 Spectral Clustering

This is a clustering technique in which the eigenvectors of the affinity or similar-
ity matrix with the highest eigenvalues are used to derive a clustering of given
data points. Given a set of data points, some measure is used to calculate the
pairwise similarity resulting in a similarity matrix. We can think of this simi-
larity matrix as a graph with the data points as the nodes and each pairwise
similarity value as the weight of an edge joining the pair. The clustering can
now be defined as a graph partitioning problem where the edges between the
points of a cluster have high weights while the edges between points belonging
to different clusters are very low weights. The idea itself is not new but renewed
interest recently has led to many new versions of this algorithm [12,13]. Our
supervised version is a modification of [13] and is detailed in Section-3.

3 System and Methods

Our primary data set, on which the clustering is carried out, is the popular yeast
microarray dataset [15] which was obtained by exposing yeast to various stress
conditions. A similarity matrix was created using a Gaussian similarity function
from this dataset. We selected only those genes that displayed a change of two
fold in at least one experiment. There were 1062 genes fulfilling this criterion. The
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assumption behind this selection strategy is that the majority of genes which do
not show much change in their expression levels during a process are unrelated
to it. We used the log2 of the ratio of the mean of Channel 2 (experimental
expression) to the mean of Channel 1 (control expression) since this creates
more symmetric distributions. The log-ratios are normalized so that each slide
has zero mean and unit standard deviation.

The secondary dataset which we have used to guide the clustering process is
the dna-binding dataset on yeast [16]. It was created using genome-wide location
analysis techniques to determine the genomic occupancy of 203 DNA-binding
transcriptional factors (TFs). In this dataset the likelihood of a particular TF
binding to the promoter region of another gene is reported in terms of a confi-
dence value (p-value). A lower p-value indicates higher confidence. In order to
extract meaningful interactions we need to use some threshold on these reported
p-values. We have used a range of p-value thresholds (from 0.1 to 0.0001) to
indicate where there is significant TF binding. Since these are experimentally
determined, each of these interactions is a constraint that we use for guiding
the clustering process. In practice we investigated a range of p-value cut-offs on
the dna-binding dataset, each corresponding to a certain set of constraints. This
was to study the impact of number and quality of constraints on the biological
significance of clustering.

As a next step, we used the p-value thresholds to convert the confidence
value data into binary data. For example, if the p-value threshold is 0.001 then
all values below this are considered as definitely bound and hence assigned a
value of 1. The rest are assigned 0 (not bound). Therefore, our constraints are
transformed into a m × n matrix where m is the number of genes and n is
the number of TFs. This matrix is used to modify the similarity matrix that
we obtain from the microarray data as indicated in Step-2 of Algorithm-1 and
Figure-1. We only selected those genes that are common to both the datasets
since some genes were missing in each.

3.1 Semi Supervised Spectral Clustering

We propose a semi-supervised form of the spectral clustering method, which
is detailed in Algorithm-1 and Figure-1. We are clustering microarray data,
hence the genes can be considered the nodes and the pairwise similarity values
are calculated using a Gaussian affinity function. The reason behind using this
affinity function is that it naturally encodes the local neighbourhood property
and its value falls rapidly as the pairwise dissimilarity increases. Once we have
this similarity matrix, we use the constraints derived from our secondary dataset
to modify it. Since our constraints already encode our belief about potential
interactions, we set each value in the similarity matrix to 1 (maximum similarity)
if there is a 1 in corresponding constraints matrix. All other values are left
unchanged as we have no information regarding them. The idea behind changing
the values to represent maximum similarity is to give the algorithm the maximum
incentive to keep them in the same cluster. The resulting matrix is the final
similarity matrix that we use for spectral clustering (Steps 3-7). We calculate
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the normalized Laplacian and then find its eigenvalues. If we believe there are k
clusters then eigenvectors corresponding to the k largest eigenvalues are chosen.
These are then normalized and clustered using the k-means clustering algorithm.
For all these integrated matrices, the k-means clustering of the eigenvectors was
started from fixed centres. These 50 centres, each representing a cluster, were
the genes encoding the TFs that had the highest numbers of dna-interactions in
the dna-binding dataset.

Algorithm 1. Semi supervised Spectral clustering

Input: Microarray data matrix, Constraints matrix derived from DNA-binding data,
width of the Gaussian(σ), number of clusters(k)

Output: k clusters comprising of all the genes in the microarray data matrix

1. Calculate the affinity matrix Kn×n from the microarray data matrix using

Gaussian similarity function k(x,x
′
) = exp

�
− ‖x−x

′‖2

2σ2

�

2. Use the constraints to modify K, Kfinal = K ⊕ C where C is the
constraints matrix. K ⊕ C implies that we set Ki,j = 1 where Ci,j = 1.

3. Calculate normalized Laplacian L = D−1/2KfinalD
−1/2

where D is the diagonal matrix with djj =
�

i dji

4. Find the eigenvectors v1, v2, . . . , vk corresponding to the largest k eigenvalues of L.

5. Use these eigenvectors as columns to get Vn×k. Normalize it to have unit
norm.

6. Cluster the points representing the rows of this matrix vi using k-means
algorithm into k clusters, C1, C2, . . . , Ck.

7. Output clusters A1, A2, . . . , Ak such that Ai = xj ∈ Ci

3.2 Parameter Selection

For any clustering algorithm, the most important decisions are the choice of
the number of clusters and the free parameters. In our case, since the similarity
among gene pairs is calculated using a Gaussian similarity function, the only
free parameter is the width of the Gaussian, σ. For any unsupervised task of an
exploratory nature, the correct number of clusters is data dependent. We chose to
use 50 clusters in our experiments, based on earlier justifications by [1,17] which
showed that the Saccharomyces Cerevisiae genome contains approximately 50
sets of functionally related genes. Both the authors have shown statistically that
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Conditions
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Fig. 1. Semi Supervised Spectral Clustering

this number provides a better fit to the underlying data distribution, compared
to a higher or lower numbers of modules.

In order to determine the value of σ we initially used one of the most popu-
lar internal cluster quality validation index namely Dunn’s Index [18]. Internal
indices take a dataset and the resulting clustering and use information fully
intrinsic to the data itself to assess the quality of clustering. This is different
from external validation indices that use information independent of the dataset
for validating the clustering. The underlying logic of using this to choose σ is to
search for a value which results in the best quality clusters. We carried out this σ
optimization without using the supervision step, clustering only the microarray
dataset.

Dunn’s index can be defined as

Dunn index = min
Ci∈C

(
min

Cj∈C\i

(
dist(Ci, Cj)

maxCk∈C diam(Ck)

))

where diam(Ck) is the maximum (complete) distance between two points within
a cluster and dist(Ci, Cj) is the minimum (single) distance between any two
points in clusters Ci and Cj . We can observe that the value of this index is high if
the inter-cluster separation is high compared to the largest cluster diameter. This
corresponds to a fundamental objective of good clustering, namely to maximise
the inter-cluster separation and minimise the intra-cluster distances. Hence better
clustering will have higher values of this index. This index, though very easy to
comprehend, can be quite unstable especially in presence of outliers.
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We ran the spectral algorithm for various σ values. The range of σ values was
determined as both the upper and lower extremes beyond which all the points
resulted in a single cluster. For each σ value, we did 10 runs as Spectral Clustering
depends on k-means which has random starting points. We also repeated the k-
means algorithm twenty five times, each run being initialised randomly, and
choose the best clustering with the minimum dispersion (within-cluster sum of
squares). The results are shown in Figure-2(a) which shows the mean values
along with standard deviation error bars. The x-axis uses a log-scale because of
the spread of the data. Dunn’s index has its maximum value (best clustering)
at σ = 0.003. It is also worthwhile to note that the best quality clustering also
has the least std. deviation.

As the standard deviation at many of the σ values was high, we investigated
another independent method for estimating the best σ. For this, we took a very
different approach relating to the use of the constraints. While adding supervision
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Fig. 2. Sigma optimization using cluster quality tests
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(constraints) we used a value of 1 (maximum similarity) irrespective of the value
of σ (which determines the pairwise similarity values of genes). We believe that
the optimum value of σ is the one for which the maximum number of constraints
are satisfied. Therefore, we define Constraints Satisfaction Ratio (CSR) as

CSR =
(

number of constraints satisfied
number of constraints applied

)

We used this index to confirm our choice of σ. As seen in Figure-2(b), the
best value of sigma is again at at σ = 0.003. Please note that in this case
we did not have to repeat runs of the clustering because as stated earlier, for
all supervised matrices, the k-means clustering of the eigenvectors was started
from fixed centres. These 50 centres (each representing a cluster) were the genes
encoding the TFs that had the highest numbers of dna-interactions in the dna-
binding dataset. Based on both (Dunn’s index and CSR) results we can safely
assume that the best clustering results are in this neighbourhood. We have not
exhaustively searched the space of all possible σ values which can be done with
a suitable optimization algorithm. We have used this σ values for all our further
analysis.

4 Discussion

Evaluation of the results of our clustering algorithm requires careful considera-
tion since there are no gold standards against which performance can be mea-
sured. The two prominent types of cluster validation measures are internal and
external validation indices. As indicated earlier internal indices take a dataset
and the resulting clustering and use information fully intrinsic to the data itself
to assess the quality of clustering while external validation indices use informa-
tion independent of the dataset for validating the clustering. We already saw the
use of an internal validity measure for parameter (σ) selection. As they are fully
dependent on the data itself, internal indices do not give any indication of the
biological significance of resulting clusters.

There are various methods that have been used in the past for external valida-
tion most of which have used the information available in Gene Ontology. They
calculate the statistical significance of various gene ontology terms in clusters.
While this method gives us general ideas about which clusters might represent
what functions, it doesn’t allow us to functionally compare different clustering
results numerically. Some attempts have been made to provide such a numerical
index using mutual information and related concepts by [19,20].

We have evaluated the results of the semi-supervised clustering algorithm
using our own external cluster validity index, which is based on the concept
of counting gene pairs that have a common parent transcription Factor. We
calculate a normalised count of such gene pairs in each cluster and use it to
estimate the biological significance of the cluster. The gene pairs with a common
transcription factor were not derived from the dna-binding dataset that we used
for supervision but from an independently curated database, YEASTRACT [21]
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which has a collection of interactions between transcription factors and genes
based on published research. In this database, the curators consider interaction
to have occurred when there is change in the expression of the target gene owing
to the deletion (or mutation) of the transcription factor-encoding gene. They
also consider evidence based on TF binding to the promoter region of the target
gene based on band-shift, footprinting or chromatin immunoprecipitation assays.
They also describe potential associations but we have not considered them as
we wanted our index to be as near to known facts as possible.

If N is total number of points in all the clusters and K is total number of
clusters and if we define our clustering algorithm as an encoder k = E(i) which
assigns each data point to a cluster k then our Biological Significance Score, BSS
is defined as

BSS =
1
K

K∑

i=1

1(
Ni

2

)
∑

a�=b
E(a)=E(b)=i

C((PTF (a) ∩ PTF (b)))

where
(

Ni

2

)
=

Ni ∗ (Ni − 1)
2

,

Ni =
N∑

k=1

I(E(k) = i) and

C(x) = Cardinality of set x
PTF (g) = set of TFs that are known to bind to gene g

Using this (BSS) score we were able to show that the algorithm can sucessfully
use the information present in the dna-binding data. The original authors of the
dna-binding dataset [16] have reported that they found the p-value of 0.001 to
be the one which best represented known TF-dna interactions. It maximizes
inclusion of legitimate TFs and minimizes false positives. Lower values were too
strict and higher values found many false positives. We were able to show a
similar trend with our score (BSS) when different p-value cut-offs were used
for selecting the constraints from the dna-binding data. As discussed earlier
in Section-3, p-values are used as cutoffs in order to get our constraints. A
significant point to note is that these p-value cut-offs have a dual role. They
determine the number of constraints as well as the quality of constraints. As the
p-value cutoff is increased, the number of constraints also increases but a higher
p-value also indicates lower confidence, hence the quality of the constraints falls.
Table-1 shows the number of constraints corresponding to various p-value cut-
offs. As a baseline we also calculated the value when no constraints are applied
(p-value=10−6).

From our results in Figure-3, we can see that with the addition of more con-
straints the cluster quality score improves till the p-value of 0.0005 and then
gradually falls with increasing p-value after the peak. This signifies that when
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Table 1. Number of Constraints with various p-value thresholds

p-value Number of Constraints

0.0001 544
0.0005 846
0.001 1053
0.005 1959
0.01 2776
0.05 7407
0.1 12579

Fig. 3. Biological Significance with constraints

the number is larger than the optimum then the constraints represent noise and
not-meaningful TF-gene interaction, and hence the clustering of microarray data
is confused and the results get worse.

5 Conclusion

We have proposed a technique to integrate two diverse datasets where one is
acting as a source of supervision on the clustering of the other. As part of this
we have investigated two methods for detemining the best Gaussian kernel to
obtain the affinity matrix from the data. Further, we have introduced a valida-
tion method which scores the resulting gene clusters by reference to a third type
of data. By replicating the trend available in the DNA-binding data, our results
demonstrate that the information available in it has been successfully incorpo-
rated in the combined matrix. However this does not necessarily prove that the
resulting clusters are biologically more significant. Further work on validation
using Gene-Ontology will help us to demonstrate the improvement in biological
significance more convincingly.
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We have used only dna-binding data as prior knowledge. Since our technique
is quite generic, in future, we plan to extend it by using other sources as prior
knowledge, for example the similarity derived from protein-protein interactions
and the similarity between the promoter sequences of genes. In this paper we im-
posed an arbitrary cutoff on the binding data and thus converted indeterminate
knowledge into definite knowledge. We would like to extend this study so that
instead of creating definite constraints we consider the p-values as a similarity
between the genes and then integrate the datasets. We can either assign weights
in a shrinkage approach or develop better methods of weighing the importance
of each dataset based on the data distributions in them.

One of the shortcomings of this research is that it is known that gene regu-
lation is a very condition specific activity and hence the expression values that
we observe are a result of regulation happening at one particular time. However
there is no way to guarantee that the dna-binding data that we use represents
the same time point in the regulation cycle as the microarray data. This is also
a fundamental limitation of the the underlying experimental techniques, since
microarrays themselves do not represent a single time point, but rather the in-
tegration of gene activity over a time period. Moreover knowledge about gene
modules is not complete and this will hinder the validation process. Further re-
search is required both in the measurement and analysis processes to improve
our understanding of how genes interact.
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The Swiss-Prot knowledgebase [1] was created in 1986. It is now the cornerstone
of the UniProt consortium [2] efforts that aims to provide to life scientists a wide
range of information concerning proteins.

UniProtKB/Swiss-Prot provides concise, but thorough, descriptions of a non-
redundant set of proteins, including their function, domain structure, post-
translational modifications and variants. Swiss-Prot is tightly integrated with
other databases, allowing the user to move seamlessly from sequence-based in-
formation to related information such as a protein’s three-dimensional structure
or its coding sequence. High quality manual annotation is what makes Swiss-Prot
so useful to its academic and industrial users. Its unparalleled level of annota-
tion is the fruit of manual curation by highly qualified biologists, who use their
understanding of biology and the vast amount of information available in the
scientific literature to provide accurate descriptions of each protein’s features.

The driving factors in the development of the knowledgebase are:

– To constantly add new entries;
– To regularly update existing entries by adding newly available data;
– To provide new type of information;
– To standardize existing information to facilitate their retrieval and program-

matic access by bioinformatics tools.

In 2007 we added 80829 entries to UniProtKB/Swiss-Prot thus reaching a total
of 333445 entries. This was by far, the biggest increase in number of entries
since the inception of the knowledgebase. At the same time we updated a huge
number of existing entries, thus adding new annotations and cross-references to
the existing corpus of knowledge.

In terms of new type of information and of standardization efforts, many
things were achieved in 2007. The full list and precise description of these
changes are listed in a web page which is updated at each tri-weekly release
(http://www.expasy.org/sprot/relnotes/sp news.html). We will only high-
light here three significant developments.

a) We have introduced a new line type (PE which stands for Protein Existence)
to indicate the evidences for the existence of a given protein. 5 levels of evidence
have been defined:

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, pp. 204–206, 2008.
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1. evidence at protein level (e.g. partial Edman sequencing, clear identification
by mass spectrometry);

2. evidence at transcript level (e.g. Northern blot);
3. inferred by homology (strong sequence similarity to known proteins in related

species);
4. predicted;
5. uncertain (e.g. dubious sequences that could be the erroneous translation of

a pseudogene).

The full list of criteria that are used to assign the different levels is described in
a new document file pe criteria.txt.

b) We have structured the comment line topic SUBCELLULAR LOCATION
in order to improve the consistency of annotation and to allow parsing of its con-
tent. A new document file subcell.txt lists the controlled vocabularies used in
this topic, their definitions and further information such as synonyms or relevant
GO terms.

c) We have added cross-references to 15 external resources, added links to
Wikipedia and changed the format of cross-references to PDB to indicate the
resolution of structures that were determined by X-ray crystallography or elec-
tron microscopy.

We plan to carry out quite a number of changes in the coming months. The
most important one in term of its impact on all our users is a complete redefini-
tion of the description (DE) lines. The UniProtKB description lines list protein
names in a computer parsable format, but currently with a minimal amount of
structure. Consistent nomenclature is indispensable for communication, litera-
ture searching and entry retrieval. The protein names provided in the description
lines of UniProtKB/Swiss-Prot are widely used by life scientists and often prop-
agated during the annotation of new genomic sequences. For these reasons we
intend to structure the UniProtKB DE lines more explicitly: we will introduce
two categories (recommended and alternative), as well as several subcategories,
of protein names.

Example in the current format:

DE Interleukin-2 precursor (IL-2) (T-cell growth factor) (TCGF)
DE (Aldesleukin).

Example in the new format:

DE RecName: Full=Interleukin-2;
DE Short=IL-2;
DE AltName: Full=T-cell growth factor;
DE Short=TCGF;
DE AltName: INN=Aldesleukin;
DE Flags: Precursor;

This development along with the many others that are planned contribute to
our mission which is to provide the scientific community with a comprehensive,
high-quality and freely accessible resource of protein sequence and functional
information.
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Abstract. We will provide an overview of recent developments in the tools and 
resources provided by the EBI Proteomics Services Team. 

The IntAct molecular interaction database (http://www.ebi.ac.uk/intact)[1] 
now offers 163.000 curated binary molecular interactions. Using the Distributed 
Annotation System (DAS)[2] and DASTY (http://www.ebi.ac.uk/dasty), we are 
currently enhancing the IntAct molecular view through direct integration with 
external resources, in particular UniProt and ChEBI. We will provide a detailed 
view of the process and our experience using DAS for data integration and 
robust data maintenance. 

The PRIDE proteomics identifications database (http://www.ebi.ac.uk/pride) 
[3] provides more than 500.000 protein identifications, supported by more than 
3 million identified peptides. We will report on recent improvements to data 
submission system and interface, in particular the visualization of PRIDE 
peptides through DAS, as well as PRIDE protein sets on Reactome pathways.  

A major challenge not only, but particularly in proteomics data resources is 
the efficient management of consistent protein identifiers and controlled 
vocabularies. We will describe two major tools to address these tasks, the PICR 
Protein Identifier Cross-Referencing service (http://www.ebi.ac.uk/Tools/picr), 
and the OLS Ontology Lookup Service (http://www.ebi.ac.uk/ols). PICR 
provides high quality mapping between protein identifier namespaces, based on 
a database of more than 15 million unique protein sequences and associated 
identifiers. OLS provides efficient access to currently almost 700.000 terms 
from 60 controlled vocabularies in OBO format. Both systems provide 
interactive as well as web service access, and are publicly available without 
restrictions. 
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Bio-ontologies Tutorial

Olivier Dameron and Julie Chabalier

EA-3888, IFR 140, Université Européenne de Bretagne, Faculté de médecine
35043 Rennes, France

1 Description

We organize a three hours tutorial about bio-ontologies and OWL-DL during
the DILS’2008 conference.

The first part will present the motivations for using ontologies in the con-
text of bioinformatics. Likewise, it will present the reference ontologies of the
domain (Gene Ontology, BioPAX, ...) and their typical use (e.g. Gene Ontology
Annotation).

The second part will be more hands-on oriented and will focus on the basic
principles for creating a simple ontology. We will cover the creation of subclasses
and of relations. At the time of the break, we will have demonstrated the ex-
pressivity of RDFS.

The third part will continue with the hands-on approach to cover OWL fea-
tures such as conjunction and disjunction, negation, and existential and universal
constraints. We will demonstrate the associated reasoning capabilities in a bioin-
formatics’ context. We will show how these capabilities can be used for main-
taining a curated version of an ontology, as well as for enriching data processing
with symbolic reasoning. In order to cover some of the OWL-DL ”peculiarities”,
this part is organized as a series of thought-provoking situations where the ini-
tial result of classification is not what one would assume, before we demonstrate
what the misleading assumption was and how to overcome it.

2 Target Audience

This tutorial is oriented to attendees from both biological or computer-science
background, with no prior knowledge of ontologies. The third part can be of
interest for attendees focusing on reasoning.

The whole tutorial will be conducted in a semi-interactive way. All the tech-
nical steps will be demonstrated live (and rather slowly) so that attendees can
choose either to follow along with their personal laptop, or just to watch.

A. Bairoch, S. Cohen-Boulakia, and C. Froidevaux (Eds.): DILS 2008, LNBI 5109, p. 208, 2008.
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